Projet de conception d’une canne
intelligente

Lefebvre Florian

January 22, 2025

g@ UNIVERSITE LabeSioire
PARIS8]
A8 000 VINCENNES-SAINT-DENIS)

Titre : Projet de conception d’une canne intelligente

Résumé : Ce projet vise a développer une canne intelligente pour per-
sonnes aveugles en intégrant une caméra et un systéme de vision artificielle
capable de détecter et identifier les objets environnants. Grace a des algo-
rithmes de traitement d’image et d’intelligence artificielle, la caméra analyse
en temps réel 'environnement et détecte les obstacles d’intéréts. Ces in-
formations sont ensuite transmises a l'utilisateur via des signaux audio pour
faciliter la navigation en toute sécurité. L’objectif est d’améliorer I'autonomie
et la mobilité des personnes malvoyantes dans leur quotidien.

Contents

1__Introduction| 4
(1.1 Objectifs|. 4
(1.2 La mise en place du projet| 4

2__Ftat de Partl 5
[2.1 ~La canne VAL multi-capteurs| 5)
[2.2 Une canne connectée intelligente multi-technologie radio] 6
2.3 Le projet ICanne| 6
2.4 C'est quoit YOLO 7|, 7

[3 Le déroulement du projet| 8
3.1 Premiére version : test et choix d’une version de YOLO[. . . . 8
[3.2 Deuxieme version : Intégration de cette premiére version avec [

[lacaméra 3dl. 11
[3.3 Iroisieme version : Développement d'une version avec Recon- |

[naissance vocale et synthése vocale sur PC| 13
[3.4 Quatriéme version : Portage de la version précédente sur Rasp- |

| berry| 16
[3.5 Cinquieme version : Développement d’un client Android | . . . 17
[3.6 Sixiéme version : Prise en compte de certaines remarques de |

[Mr Uzan| o 19
[3.7 Perspectives : Integration de Rasa et de chatGPT| 20

4__Conclusions| 21

[5 Bibliographie| 21

[Referencesl 21

(6 Webographie| 22

[References] 22

[f_Annexes| 22
[(.1 Annexe 1: Test de Yolovd 22
[(.2 Annexe 2: Yolov7 et la camera3d 24
[7.3 Annexe 3: Algorithme de la gestion des ilots de confiance| . . . 26
(.4 Annexe 4: Client Android pour la reconnaissance vocale| 28
[7.5 Annexe 5: Application Python sur Raspberry ou PC| 34

1 Introduction

1.1 Objectifs

L’objectif est de développer une canne intelligente capable d’aider les per-
sonnes aveugles ou malvoyantes a naviguer de maniére plus autonome grace
a la vision artificielle et I'intelligence artificielle. La canne devrait pouvoir
détecter les obstacles, reconnaitre les objets environnants et fournir un retour
audio ou haptique a l'utilisateur.

Il est prévu d’utiliser un ou plusieurs capteurs a ultrasons pour détecter les
obstacles devant l'utilisateur. En cas de détection d’un obstacle a proximité
(moins d’un métre, par exemple), la canne peut envoyer un signal haptique a
I'utilisateur via un moteur de vibration ou le prévenir avec un retour audio.

Avec la caméra et les algorithmes de vision artificielle (par exemple YOLO),
la canne pourrait détecter et reconnaitre des objets spécifiques (comme les
passages piétons, les panneaux de signalisation, les voitures, etc.). Cette
information serait communiquée a I'utilisateur via un retour audio.

Il est aussi prévu d’implémenter un agent conversationnel de base qui
pourrait répondre aux commandes vocales simples (par exemple, "Qu'y a-t-
il devant moi ?") ou fournir des informations sur les objets reconnus. Cet
assistant pourrait également étre utilisé pour les retours audio sur la recon-
naissance d’objet.

1.2 La mise en place du projet

Pour ce projet, il a fallu faire ’achat de matériel dont la liste est la suivante

e Raspberry Pi (modéle avec capacité de traitement suffisant, comme le
Raspberry Pi 4).

e Caméra 3D Intel RealSense D435i1
e Capteur a ultrasons (pour détecter les obstacles proches).

e Modules audio (haut-parleur ou casque Bluetooth pour les retours au-
dio).

e Moteur de vibration (pour le retour haptique).
e Batterie portable (pour alimenter le Raspberry Pi).

e Boutons ou interrupteurs (pour controler certaines fonctionnalités).

Les logiciels nécessaires pour ce projet sont :

e Raspbian OS ou une autre distribution compatible avec le Raspberry
Pi.

e OpenCV et Yolo pour la vision artificielle.

e Libraries Python pour les capteurs (comme RPi.GPIO ou pigpio pour
les capteurs a ultrasons).

e Text-to-Speech (TTS) (comme eSpeak ou Google Text-to-Speech) pour
le retour audio.

e Speech Recognition (optionnel, pour les commandes vocales).

2 Etat de l’art

Plusieurs études ont été mené pour concevoir une canne pour aveugle dotée
de possibilités innovantes comme la détection d’obstacles. Nous présentons
ici certaines de ces études.

2.1 La canne EVAL multi-capteurs

Cette étude [WAN2021| propose une canne intelligente peu cotteuse, non
intrusive et multifonctionnelle, pour des personnes aveugles ou des person-
nes malvoyantes. Plusieurs capteurs tels qu'un accélérométre/gyrométre, un
capteur a ultrasons, une résistance sensible a la force (FSR) et un capteur
de température ont été installés sur la canne pour collecter les données de la
démarche de I'utilisateur et de son environnement de marche. Bien que ces
capteurs n’aient pas été installés directement sur le corps humain, la fonction
de marche de I'utilisateur peut étre décrite par certains d’entre eux, tels que
I'accélérometre et le FSR, ce qui signifie que la démarche de l'utilisateur peut
étre analysée et évaluée pendant la marche avec la canne. En outre, sur la
base de 'analyse des données de ’accéléromeétre, il est également possible de
détecter des événements indésirables tels que des chutes pendant la marche,
ce qui est utile pour le suivi de la santé de I'utilisateur. De plus, la canne
dispose d’un capteur a ultrasons utilisé pour détecter un obstacle devant la
canne et ce capteur fonctionnera avec un buzzer afin de donner un signal
sonore a l'utilisateur lorsqu’un obstacle est déteint.

La canne EVAL représente une avancée significative pour la mobilité des
personnes malvoyantes ou aveugles grace a ses fonctionnalités technologiques
et ses capacités étendues. Cependant, son adoption est freinée par son coiit,

sa complexité et des limitations techniques. Elle est idéale pour les personnes
ayant des besoins spécifiques et capables de s’adapter a ces outils modernes,
mais elle ne remplace pas complétement la canne blanche traditionnelle, sim-
ple, fiable et économique.

2.2 Une canne connectée intelligente multi-technologie
radio

Cette étude [VAL2021| présente le développement d’une canne intelligente,
dotée de plusieurs technologies de communication sans fil, visant & améliorer
la mobilité et la sécurité des personnes agées ou a mobilité réduite. L’objectif
principal de cette canne est de fournir une aide supplémentaire aux util-
isateurs en intégrant des fonctionnalités de détection et de communication.
[’étude porte sur plusieurs aspects techniques, allant de la conception a la
réalisation, ainsi que sur les tests effectués pour s’assurer de son efficacité.
La canne est équipée de différentes technologies radio (comme le Bluetooth
et le Wi-Fi), permettant de collecter et de transmettre des données relatives
a la position, a I'environnement et a 1’état de santé de 'utilisateur. La canne
intégre des capteurs pour surveiller divers paramétres tels que la distance,
Iorientation et les obstacles, et pour fournir une aide en cas de chute ou
d’incident. De plus, elle permet une communication avec des appareils ex-
ternes, tels que des smartphones ou des dispositifs médicaux, facilitant ainsi
un suivi a distance par des proches ou des professionnels de la santé.

Les tests réalisés ont permis de valider la fonctionnalité de la canne et
son efficacité dans la détection d’obstacles et dans la fourniture d’assistance
en cas d’urgence. L’article présente également les défis techniques rencontrés
pendant le développement de la canne, ainsi que les solutions apportées. En
résumeé, cette étude propose une solution innovante et technologique visant
a améliorer la sécurité des utilisateurs et a faciliter la gestion de leur mobil-
ité, tout en assurant une surveillance a distance grace aux technologies de
communication sans fil.

2.3 Le projet ICanne

Le projet ICanne [4] est une canne intelligente congue pour améliorer la
mobilité et 'autonomie des personnes malvoyantes. Elle intégre une caméra
et des capteurs intelligents permettant de détecter et d’identifier en temps
réel les obstacles et objets environnants.

Grace a l'intelligence artificielle et la vision par ordinateur, ICanne anal-
yse I'environnement et alerte l'utilisateur via des signaux haptique (vibra-

tions) et audio (guidage vocal). Elle permet ainsi d’éviter les dangers tels
que les trottoirs, escaliers, poteaux ou véhicules en mouvement.

[Canne répond a un besoin réel : améliorer 'autonomie des personnes
aveugles ou malvoyantes. Actuellement, les cannes classiques ne permettent
pas d’identifier précisément les obstacles complexes (véhicules en mouvement,
objets suspendus, etc.). En intégrant une vision artificielle et des capteurs
intelligents, cette innovation apporte une solution proactive aux défis de mo-
bilité urbaine.

2.4 C’est quoi YOLO ?

YOLO [SUN2020] est acronyme de You only look once est 'une des archi-
tectures les plus révolutionnaires dans le domaine de la détection d’objets.
Introduit pour la premiére fois en 2015, YOLO a transformé la maniére dont
les objets sont détectés dans les images et les vidéos contrairement aux ap-
proches traditionnelles de détection d’objets qui divisent 1'image en région
et passe chaque région a travers un classificateur séparé, YOLO adopte une
approche radicalement différente en traitant la détection comme un probléme
de détection unique. Ce qui distingue YOLO, c’est sa capacité a traiter une
image entiére en une seule passe a travers le réseau de neurones d’ol son
nom ! You only look once. Cette approche permet non seulement de réaliser
des détection extrémement rapides mais aussi d’obtenir une grande préci-
sion méme dans des contextes en temps réel comme la surveillance vidéo,
la conduite autonome, et les applications mobiles. Au fil des années YOLO
a évolué a travers plusieurs versions, chacune apportant des améliorations
significatives en terme de vitesse, de précision et de capacité a détecter des
objets dans des environnements variés et complexes.

e La version de YOLOV1 introduit I'idée novatrice d’utiliser un réseau de
neurones unique pour la détection d’objets en temps réel révolutionnant
ainsi la facon dont ces taches étaient abordées.

e Cette premiére version a rapidement été suivi par YOLOv2 également
connu sous le nom de YOLO9000. FElle a amélioré la précision du
modeéle tout en introduisant des techniques avancées telles que les an-
cres (anchor boxes) permettant une meilleure gestion des objets de
différentes tailles.

e YOLOV3 a marqué une nouvelle étape importante en introduisant la
détection multi-échelle, une fonctionnalité clé qui a permis de mieux
détecté les objets a différentes tailles tout en améliorant la performance
globale et la flexibilité du modéle.

7

e Avec YOLOV4, l'accent a été mis sur 'optimisation pour la vitesse.
Cette version a combiné diverses techniques d’optimisation architec-
turale pour maximiser l'efficacité du modéle le rendant encore plus
adapté aux application en temps réel.

e Ensuite, YOLOV) est apparu bien qu’il n’ai pas été développé par les
auteurs originaux, il a rapidement gagné en popularité car grace a ces
performances remarquables, et & sa facilité d’utilisation. Cette version
a été largement adopté par la communauté pour sa capacité a s’adapter
a différents cas d’utilisation.

e Les versions YOLOV6 & YOLOVS ont continué sur cette lancée en ap-
portant des optimisations supplémentaires pour diverses applications.
Ces versions ont vu des améliorations significatives en terme de struc-
tures réseaux et de techniques de formation renforcant la précision et
la rapidité du modéle.

e YOLOVY a poursuivi cet effort en intégrant des avancées récentes dans
le domaine de la détection d’objets offrant un bonne équilibre entre
rapidité et précision.

e Cependant, il existe des versions plus récentes comme YOLOV10 qui
continuent a perfectionner ces aspects et a introduire de nouvelles ar-
chitectures techniques de formation consolidant YOLO comme 1'un des
modeéles les plus performants pour les taches de détection en temps réel.

3 Le déroulement du projet

Pour mener a bien ce projet, j'ai dii réaliser un ensemble de mini-projets
permettant d’avancer progressivement dans I'apprentissage des technologies
et une intégration sécurisée de chacune d’entre elles. Je vais présenter ici les
différentes versions que j’ai mis en place.

3.1 Premiére version : test et choix d’une version de
YOLO

Au début de ce projet, j’ai di choisir un outil me permettant de détecter
des objets a l'aide d’une caméra. Il fallait prendre en compte le contexte
technique de ce projet qui était 'utilisation d’un Raspberry version 5. J’ai
fait le choix de YOLO car il a été optimisé pour des appareils a ressources

limitées comme le Raspberry Pi, les drones, ou les smartphones. Des vari-
antes légeres comme Tiny YOLO sont congues spécifiquement pour des en-
vironnements avec des contraintes matérielles. YOLO est concu pour étre
rapide, ce qui en fait un choix idéal pour des applications en temps réel. Con-
trairement a d’autres modéles de détection comme R-CNN, YOLO traite une
image entiére en une seule passe du réseau, ce qui réduit considérablement
le temps de traitement. Les derniéres versions de YOLO (comme YOLOV5S
ou YOLOVS8) sont optimisées pour le calcul sur GPU, offrant une perfor-
mance exceptionnelle méme sur des dispositifs embarqués. La version que
j’ai choisi pour ce projet est YOLOv7. YOLOVT est une évolution des mod-
éles YOLO (You Only Look Once) pour la détection d’objets en temps réel.
Publié en 2022, il améliore les performances par rapport a ses prédécesseurs
comme YOLOv) et YOLOv4. La figure suivante extraite du site de github
: https:github.com/WongKinYiu/yolov7/tree/main permet de comparer
quelques différentes versions. Sur ce schéma, chaque YOLO a des perfor-
mances. Cela indique qui est le plus ou le moins rapide et le plus ou le moins
précis.

bc_tter MS COCO Object Detection

h
o

YOLOvV7 is +120% faster

54

AP

==Y OLOV7 (ours)
YOLOR
—a— PPYOLOF
*—YOLOX
Scaled-YOLOv4
<0 / YOLOvS (r6.1)

11 13 15 17 19 21 23 25 27 29 31 3

- 7 9
better« V100 batch 1 inference time (ms)

Figure 1: Comparaison de versions de YOLO

Dans le tableau ci-dessous, on voit que la précision de YOLOV7 est de
55.9

L’annexe 1 donne le programme de cette version et ci-dessous ses princi-
pales etapes:

https:github.com/WongKinYiu/yolov7/tree/main

Model TestSize AP'™S! APgp'™s! APt batch1fps batch 32 average time

YOLOV? 640 51.4% 69.7% 55.9% 161 fps 2.8 ms
YOLOV7-X 640 53.1% 71.2% 57.8% 114 fps 43 ms
Yihi Ov7-W6 1280 54.9% 72.6% 60.1% 84 fps 7.6 ms
YOLOV7-E6 1280 56.0% 73.5% 61.2% 56 fps 12.3 ms
YOLOV7-D6 1280 56.6% 74.0% 61.8% 44 fps 15.0 ms
YOLOV7-E6E 1280 56.8% 74.4% 62.1% 36 fps 18.7 ms

Figure 2: Comparaison de versions de YOLO

Chargement du Modéle YOLO

e Chargement des fichiers de configuration yolov7-tiny.cfg et des
poids du réseau yolov7-tiny.weights.

e Initialisation du réseau neuronal.
Lecture des Classes d’Objets

e Chargement du fichier coco.names, contenant les noms des classes
(ex. personne, voiture, chien...).

e Stockage des classes dans une liste.
. Identification des Couches de Sortie

e Récupération des noms des couches du réseau.

e Détermination des couches utilisées pour les prédictions.
Capture Vidéo en Temps Réel

e Ouverture de la caméra pour capturer des images en continu.

e Vérification de la connexion vidéo.
. Prétraitement de I’'Image

e Conversion de I'image en un format compatible avec YOLO (red-
imensionnement & 416x416 pixels, normalisation).

e Passage de I'image au réseau neuronal.

. Exécution de YOLO et Analyse des Détections

10

e Extraction des scores de confiance pour chaque classe détectée.

e Filtrage des détections avec un seuil minimal de 50%.
7. Calcul des Coordonnées des Boites Englobantes

e Conversion des coordonnées normalisées en pixels réels.

e Détermination de la position et de la taille des objets détectés.
8. Affichage des Résultats

e Dessin des boites englobantes sur 'image.

e Affichage des noms des objets et du niveau de confiance.
9. Gestion des Entrées Utilisateur

e Affichage de la vidéo avec les détections en temps réel.

e Arrét du programme lorsqu’on appuie sur la touche Echap.
10. Libération des Ressources

e Fermeture de la capture vidéo.

e Destruction des fenétres OpenCV pour libérer la mémoire.

3.2 Deuxiéme version : Intégration de cette premiére
version avec la caméra 3d

La caméra utilisée dans ce projet est le modéle 3d Intel RealSense D435i.
Elle est une solution de choix pour les projets nécessitant une perception 3D
avancée couplée a des fonctionnalités de suivi spatial. Sa polyvalence et sa
facilité d’intégration en font un outil prisé dans des domaines variés allant
de la recherche académique aux applications industrielles avancées.

Pour faire cette deuxiéme version, il a fallu utiliser le kit de développement
SDK 2.0. Ce kit de développement est une solution clé en main congue pour
les développeurs et ingénieurs souhaitant exploiter les capacités avancées de
la caméra D435i dans des applications de vision par ordinateur, robotique,
ou réalité augmentée. Ce kit intégre la caméra RealSense D435i et les outils
logiciels nécessaires pour faciliter son utilisation et son intégration dans divers
projets. L’annexe 2 de ce document contient le code en Python de cette
intégration de YOLO avec la caméra utilisée dans ce projet. Voici ci-dessous
les étapes générales de ce programme :

1. Chargement du modéle YOLOvT7

11

e Chargement du fichier de poids (model.pt) sur le CPU.

e Récupération des noms des classes que YOLO peut détecter.
2. Initialisation de la caméra RealSense

e Activation des flux RGB et profondeur avec une résolution de
640x480 a 30 FPS.

3. Boucle de capture d’images en temps réel

e Acquisition des frames (image couleur + profondeur).
e Prétraitement des images :

— Redimensionnement
— Normalisation

— Conversion en tenseur PyTorch
e Détection des objets avec YOLOvT.

e Filtrage des détections avec Non-Max Suppression (NMS)
pour éviter les doublons.

4. Affichage des résultats

e Pour chaque objet détecté :

— Récupération des coordonnées de la boite englobante.
— Calcul de la distance de I’objet par rapport a la caméra.
— Affichage des boites vertes et labels sur 'image.

5. Interaction utilisateur

e Pose d’une question pour identifier un objet.
e Comparaison avec "quel objet".

e Appel de la fonction de détection et affichage des objets détectés.
6. Gestion de la fermeture du programme

e Sila touche Echap (ESC) est pressée, la capture s’arréte.

e Fermeture de la caméra et des fenétres OpenCV.

12

3.3 Troisiéme version : Développement d’une version

avec Reconnaissance vocale et synthése vocale sur
PC

Cette troisiéme version a pour objectif d’offrir a 'utilisateur le moyen d’intéragir
avec les objets reconnus par YOLO. Pour cela, il est interessant de noter que
le langage utilisé dans notre interface est dit opératif [FAL1986]. Un lan-
gage opératif est orienté vers 'exécution d’actions concrétes et mesurables.
Contrairement a un langage purement théorique ou descriptif, il permet
de décrire des processus qui ménent directement a des résultats pratiques,
comme l’exécution d’une tache ou la résolution d’un probléme. Dans un
langage opératif, chaque action doit étre clairement définie, de maniére a ce
que le programme ou le systéme sache exactement ce qu’il doit faire. Cela
se traduit par une syntaxe simple et précise pour exprimer des opérations a
réaliser. La syntaxe opérative en reconnaissance vocale est essentielle pour
structurer 'interaction voix-machine de maniére fluide et efficace. Elle per-
met de controler précisément ’écoute de 'utilisateur, 'analyse des mots-clés,
I’activation des fonctionnalités associées, le retour vocal ou visuel.

Dans le contexte de notre étude, le vocabulaire choisi correspond en
général a des verbes qui sont associées a ce que peut renvoyer la caméra
sur son champ d’observation. Par exemple, des mots comme voir, aider,
loin, proche peuvent déclencher des actions tels que voir les objets devant la
caméra, demander de 'aide sur les possibilités du dialogue, donne 'objet le
plus proche dans le champ de la caméra. La nature du dialogue est donc trés
limitée. De plus, le contexte de modalité choisi est la reconnaissance de la
parole puisque notre sujet concerne des personnes aveugles ou malvoyants.
Or, cette modalité est malheureusement trés délicate a gérer de part le bruit
ambiant, la qualité de la reconnaissance. Il faut par conséquent permettre
d’interpréter des phrases avec malheureusement des mots non reconnus, des
erreurs de reconnaissance. Les phrases peuvent étre non respectueuse d’une
syntaxe du francais. A titre d’exemple, voici une phrase prononcé plusieurs
fois et le résultat de la reconnaissance. La phrase est : "montre moi les objets
que tu voix" et elle est prononcée 7 fois de suite :

montre -moi que tu vois

montre-moi les objets que tu vois

a des moutons et les objets que tu vois
montre -moi les objets que tu vois
montre -moi les objets que tu vois

a un mois de que tu as que tu vois

tu peux tu vois

13

Le résultat montre clairement que sur 7 répétions, trois sont correctes (2, 4,
5) et les autres ont une syntaxe ne respectant pas le frangais(1, 3, 6, 7). Par
conséquent, utiliser un parseur qui permettrait de valider la syntaxe de la
phrase reconnue vocalement, ne serait pas d'une grande utilité.

La technique que j’ai choisie est 1'utilisation d’une grammaire a ilots de
confiance[1][2]. Un ilot de confiance en langage naturel fait référence a une
portion de texte ou de discours ou certaines informations sont considérées
comme fiables et établies, souvent dans un contexte plus large ot des éléments
de doute ou d’incertitude peuvent exister. En reconnaissance de la parole, il
est fréquent qu’une partie de la transcription soit erronée a cause de bruits
externes, d’accents ou de variations dans la parole. Les ilots de confiance
aident a identifier ces erreurs rapidement et a les corriger en se basant sur les
parties du discours ot la certitude est plus élevée, facilitant ainsi les processus
de traitement.

Les étapes générales pour implémenter un ilot de confiance sont :

1. Capture et validation initiale de I’entrée vocale.
2. Prétraitement et détection de confiance sur 'entrée vocale.

3. Validation des commandes dans un ilot sécurisé ou seule une commande
valide est exécutée.

4. Réponse ou action sécurisée en fonction des résultats.

Dans cet exemple, I'implémentation d’un ilot de confiance en Python sert
a valider une commande vocale avant qu’elle ne soit exécutée. Ce systéme
garantit que seules des commandes fiables et stires sont prises en compte, pro-
tégeant ainsi l'intégrité du systéme. L’ilot de confiance joue un role de filtre
avant de laisser certaines actions se produire, en fonction de la reconnaissance
de la parole et d’une vérification préalable.

L’algorithme qui permet d’identifier ’action la plus probable & partir
d’une phrase dite vocalement en analysant les mots qu’elle contient est le
suivant :

1. Création d’une table d’actions : Chaque action est associée a une liste
de mots synonymes.

2. Découpage de la phrase en mots : La phrase d’entrée est divisée en une
liste de mots individuels.

3. Pour chaque action, on compte combien de mots de la phrase figurent
dans la liste des synonymes de 'action.

14

4. Un score est attribué a chaque action en fonction du nombre de mots

correspondants.

5. Sélection de 'action la plus pertinente :

6. L’action ayant le plus de mots en commun avec la phrase est retenue.

7. Si aucun mot pertinent n’est trouvé, la phrase est considérée comme

du "bruit".

Phrase d’entrée

Action identi-

fiée
Je veux apercevoir et observer le paysage voir
Peux-tu écouter et percevoir ce son entendre
Je vais courir et me déplacer rapidement marcher

Cette phrase n’a aucun mot pertinent

Bruit détecté

Table 1: Exemple de fonctionnement de 1'algorithme

Cet algorithme est décrit en pseudo-langage dans 'annexe 3 de ce doc-
ument. En ce qui concerne la synthése vocale et la reconnaissance vocale,
plusieurs solutions étaient envisageable. Le tableau ci-dessous extrait de

ChatGPT compare ces solutions :

Outil Précision | Langues | Hors ligne | Facilité | Cofit
Google Speech-to-Text ook 120+ Non ok Payant
Microsoft Azure orokok 70+ Non orokok Payant
IBM Watson ook 10+ Non ook Payant
OpenAl Whisper opokkok 50+ Oui *x Gratuit
Deepgram otk 30+ Non ik Payant
VOSK ok 20+ Oui ork Gratuit

Table 2: Comparaison des outils de reconnaissance vocale

J’ai choisi VOSK qui a 'avantage d’étre gratuit, d’étre simple d’utilisation.
VOSK est une bibliothéque open-source développée pour la reconnaissance
vocale en temps réel et hors ligne. Basée sur le moteur Kaldi, elle est op-
timisée pour fonctionner sur des appareils a faible puissance, tels que les
Raspberry Pi, les ordinateurs embarqués, et les serveurs locaux.

15

En ce qui concerne la synthése vocale, j’ai choisi PyAudio qui est une
bibliothéque Python qui permet d’interagir avec les périphériques audio pour
enregistrer et lire des fichiers sonores. Elle est basée sur PortAudio, une
API open-source pour la gestion des entrées et sorties audio sur plusieurs
plateformes.

L’une des difficultés rencontrées est la gestion de la reconnaissance vocale
et de la reconnaissance d’objets avec YOLO en paralléle. Comme le traite-
ment de YOLO se fait en continu sur les images envoyées par la caméra, il
a fallu gérer également la reconnaissance de la parole en paralléle. A 'aide
des threads de Python, cela a été possible mais il a été nécessaire de vider le
canal de communication utilisée par la reconnaissance vocale pour ne pas que
la synthése vocale soit interprétée par la reconnaissance vocale. L’annexe 5
contient le code de cette version.

3.4 Quatriéme version : Portage de la version précé-
dente sur Raspberry

Dans cette quatriéme version, la problématique a été 'installation de 'interface
pour Python. Le code de I'application n’a pas changé mais la camera 3d
n’était pas reconnue par Python. De nombreux échanges avec la hotline
du constructeur de la caméra ont fini par aboutir & un fonctionnement de
I’application. Toutes le versions de Python ne sont pas compatibles avec
cette caméra. Mais la hotline m’a indiqué que Python n’était pas le langage
favori et stable pour cette caméra. D’ailleurs, ils convenaient eux-mémes que
je n’étais pas le seul a avoir des problémes. Les langages favories pour cette
caméra étant C ou C++, mais la gestion de YOLO se faisant généralement
en Python, il semblait naturel de gérer également la caméra en Python. Voici
un extrait de cette discussion avec la hotline :

"Although the librealsense SDK can be made to work with Raspberry Pi
using installation methods such as libuve, Intel do not provide official support
for the SDK on Pi. I also do not use it on Pi myself. It is not the ideal
platform to use RealSense on, as at best a Pi can provide access to basic
RealSense depth and color streams but not more advanced features such as
IMU data, alignment, post-processing filters. It is possible to use libuve to
install librealsense, but adding wrappers such as pyrealsense2 or ROS on Pi
can be problematic."

16

849 @ B 854 & &

Reconnaissance d'objets Reconnaissance d'objets

Reconnaissance dans un fichier
Reconnaissance avec un microphone Stopper le microphone

Pause

Dites quelque chose

{

"text" - ™

Figure 3: Interface de base

Figure 4: Ouverture du micro-
avec I'application Android

phone pour lancer une requéte

3.5 Cinquiéme version : Développement d’un client An-
droid
[application Android (Figure 3 et 4) est un client qui permet de prononcer
une commande vocalement. Une fois le microphone ouvert, 1'utilisateur dit
avec la voix ce qu’il souhaite demander a la caméra. Cette requéte est envoyée
au Raspberry par le protocole WIFI. Le Raspberry sert donc de serveur.
L’application Python est lancée sur celui-ci. Au démarrage, on demande &
I'utilisateur s’il souhaite interagir avec la caméra sur le Raspberry ou bien sur
le client Android. Ce client Android ne sert donc que d’interface client. Toute
I'analyse de la requéte et la détection des objets se réalisent sur ’ordinateur
Raspberry. Cette application Android a été réalisé a 'aide d’un tutoriel
[3] montrant I'intégration de la bibliothéque VOSK sur Android auquel j’ai
ajouté le protocole de communication pour communiquer avec le Raspberry.

17

Le code de cette application est fournie en annexe 4. Ci-dessous le code
Python qui gére 'attente des requétes :

1 with socket.socket(socket.AF_INET, socket.SOCK_STREAM)
as server_socket:
2 server_socket .bind ((HOST, PORT))
' server_socket.listen ()
while True:
client_socket, client_address =
server_socket.accept ()
with client_socket:
data =
client_socket.recv(1024) .decode (’utf-87)
8 if data
try:
parsed_data =
json.loads(data)
extracted_value =
parsed_data.get ("text",
None)
12 if extracted_value:
q.put(extracted_value.lower ())
14 except json.JSONDecodeError:
print("Failed to parse
data as JSON.")

Le programme fonctionne de la maniére suivante :
1. Démarrage du serveur :

o Le serveur démarre et attend des connexions entrantes sur 'adresse
HOST et le port PORT.

2. Connexion d’un client :

e Un client se connecte au serveur via une connexion TCP.

e Le serveur accepte la connexion et crée un socket dédié a la com-
munication avec ce client.

3. Réception et traitement des données :

e Le client envoie un message contenant des données au format

JSON.

e Le serveur recoit ces données et les convertit en texte.

18

N

e [l extrait la valeur associée a la clé "text" si elle est présente.
4. Stockage des données :
e Sila clé "text" est trouvée, son contenu est converti en minus-
cule.
e Ce texte est ensuite ajouté a la file d’attente q pour un traitement
ultérieur.

5. GGestion des erreurs JSON :

e Sile message recu n’est pas un JSON valide, une erreur est affichée
sans interrompre le serveur.

6. Maintien en écoute :

e Le serveur continue d’écouter et peut traiter de nouvelles connex-
ions clients.

Coté Android, voici le code concerné par cette envoie de requéte vers le
Raspberry :
private void sendToServer (String text) {
try (Socket socket = new Socket(RASPBERRY_PI_IP,
PORT) ;
OutputStream outputStream =
socket.getOutputStream()) {

outputStream.write(text.getBytes());
outputStream.flush();

Log.d(TAG, "Texte envoye au serveur : " +
text);

} catch (Exception e) {
Log.e(TAG, "Erreur lors de l’envoi au
serveur : " + e.getMessage());

3.6 Sixiéme version : Prise en compte de certaines re-
marques de Mr Uzan

Monsieur Uzan a eu la gentillesse de tester mon travail en me donnant des
pistes d’améliorations. L’une d’entre elles est une meilleure gestion du micro.

19

En effet, le micro n’est pas controlable par 'utilisateur et la reconnaissance
vocale peut déclencher le traitement sur ce qui vient d’étre dit. Ce qui
provoque la répétition d’une commande. Pour éviter cela, il est désormais
possible vocalement d’ouvrir le micro, de le fermer et de connaitre I’état du
micro. D’autre part, lorsque la synthése fonctionne, I'information qu’elle
donne est enlevé du canal ot le thread de la reconnaissance de la parole va
chercher les informations a traiter.

Un autre conseil de Mr Uzan est de ne pas abuser de la synthese vocale car
elle peut a force devenir une charge cognitive importante pour 'utilisateur.
C’est vrai que la tendance de mon application est de confirmer ce qui a été
compris vocalement, ce qui devient trop redondant avec la reconnaissance de
la parole. Un certain nombre de messages vocaux ont été supprimés pour
alléger 'interface vocale.

Un autre conseil trés intéressant mais pour plus tard, serait pour Mon-
sieurs Uzan de pouvoir scénariser I’application. En effet, on pourrait imaginer
étre dans une salle de bain, et se demander ou est le dentifrice, est-ce que la
baignoire est remplie etc..

Un autre conseil serait de rendre le dialogue moins prévisible pour 'utilisateur
comme par exemple, tirer au hasard une réponse parmi plusieurs ayant le
méme sens. Cela permet de générer un dialogue plus naturel et moins "robo-
tisé". Cela n’est pas encore intégré dans l'application.

3.7 Perspectives : Integration de Rasa et de chatGPT

J’al commencé a étudier le framework Rasa qui permet de développer un
chatbot. Rasa est un framework open-source pour construire des chatbots et
des assistants virtuels alimentés par I'intelligence artificielle (IA). Il est prin-
cipalement utilisé pour développer des systémes de traitement du langage
naturel (NLP) et permet aux entreprises de créer des assistants conversa-
tionnels personnalisés.

En effet, I'interaction actuelle de mon systéme reste limitée et ne permet
pas a l'utilisateur de construire un dialogue contextuel. Rasa servira a gérer
les interactions avec 'utilisateur :

e Ex: "Décris-moi ce qu’il y a devant moi."

e Ex: "Y a-t-il un obstacle devant moi 2"

o Ex: "Quel est l'objet a 2 métres sur ma droite 2"

e Rasa peut aussi gérer des commandes vocales et envoyer les requétes

au modéle de détection.

20

ChatGPT peut étre utilisé pour :

e Améliorer la description des objets détectés (expliquer avec plus de
détails).

e Adapter la réponse selon le contexte et le langage naturel.
e Offrir un support conversationnel avancé.

Ce type d’architecture serait conditionnée par la capacité du Raspberry a
supporté ce type d’outils avec un FPS raisonnable. Bien que le Pi est utilisé
pour des projets d’[A depuis un certain temps maintenant, une nouvelle
carte pour le Raspberry : le PI TA kit pourrait lui fournit le coup de pouce
nécessaire pour exécuter des modéles avancés et lui offre la capacité de faire
fonctionner des modeéles plus simples plus rapidement.

4 Conclusions

Ce projet m’a permis de découvrir de nombreux domaines que je ne connais-
sais pas du tout, telles que la reconnaissance vocale, la vision par ordinateur
a l'aide d'un framework réputé comme YOLO. La mise au point technique
de ce projet est complexe mais m’a permis d’entrevoir des possibilités trés
encourageantes au service du handicap.

Les apports de ce projet me permettront d’aborder mon stage en en-
treprise avec plus de sereinité car sa problématique rejoint un peu celle de
ce projet en utilisant la vision par ordinateur pour apprendre & rééduquer
certaines personnes souffrant d’handicap moteur.

5 Bibliographie

References

|IBER2024| Somnath Bera, fonctions vocales avec le Raspberry Pi Zero, Re-
vue Elektor édition spéciale IA, p 58 a 65, 2024

|[FAL1986| Pierre Falzon, Langages opératifs et compréhension opérative.
These de doctorat, Université Paris V — La Sorbonne, 1986

[SUN2020] Anu Suneja, A comprehensive review of YOLO architectures
in computer vision: fromYOLOvItoYOLOv10, Independently published,
2020

21

|[PAN2016] Tanay Pant, Building a virtual assistant for RaspBerry Pi,

APRESS, 2016

[VAL2021] Thierry Val, Réjane Dalcé, Imen Megdiche, Oussema Fakhfakh,

Khawla Ltif, Etude, conception, réalisation et tests d’une nouvelle canne

connectée intelligente multi-technologie radio, HAL open science, 2021

[WAN2021] Ting Wang, Rupert Grobler, Eric Monacelli, The Developpment

6

of EVAL Cane-A Smart Cane for the Evaluation of Walking Gait and
Walking Environmenti, HAL open science, 2021

Webographie

References

1

2]

3]

4]

7

Office québécois de la langue francaise. llots de confiance en langage
naturel. Disponible en ligne : https://vitrinelinguistique.oqlf.
gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance

Islands of Reliability for Regular Morphology. MIT. Disponible
en ligne https://web.mit.edu/albright/www/papers/
Albright-IslandsOfReliability.pdf

Site de démo Vosk sur Android. Disponible en ligne : https://
alphacephei.com/vosk/

Le projet icane. Disponible en ligne : https://www.transtech.fr/
projets/icane/

Annexes

7.1 Annexe 1: Test de Yolo v7

import c¢cv2 as cv
import numpy as np

Charger les poids et la configuration YOLOv4-tiny

weights_path = ’yolov7-tiny.weights’
config_path = ’yolov7-tiny.cfg’
net = cv.dnn.readNet (weights_path, config_path)

22

https://vitrinelinguistique.oqlf.gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance
https://vitrinelinguistique.oqlf.gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance
https://web.mit.edu/albright/www/papers/Albright-IslandsOfReliability.pdf
https://web.mit.edu/albright/www/papers/Albright-IslandsOfReliability.pdf
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/
https://www.transtech.fr/projets/icane/
https://www.transtech.fr/projets/icane/

9

Charger les noms des classes (fichier coco.names)
with open(’coco.names’, ’r’) as f:
classes = [line.strip() for line in f.readlines ()]

Obtenir les noms des couches de sortie

layer_names = net.getlLayerNames ()

output_layers = [layer_names[i - 1] for i in
net.getUnconnectedOutlayers () .flatten ()]

cap = cv.VideoCapture (2)

while 1:
ret, img = cap.read()
if not ret:
break
img = cv.flip(img,1)
height, width, channels = img.shape

Pretraitement de l’image de la camera

blob = cv.dnn.blobFromImage(img, 0.00392, (416,
416), (0, 0, 0), swapRB=True, crop=False)

net.setInput (blob)

outs = net.forward (output_layers)

Analyser les detections
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
Obtenir les coordonnees de la boite
englobante
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
label = f"{classes[class_id]}:
{confidence:.2f}"

Dessiner la boite et 1l’etiquette sur

23

N

10

11

18

1’image
color = (0, 255

, 0)

cv.rectangle (img, (x, y), (x + w, y +

h), color, 2)
cv.putText (img, label, (x, y - 10),
cv.FONT_HERSHEY_SIMPLEX, 1, color,
cv.imshow(’Detection Camera’, img)
if cv.waitKey (1) == 27:
break
cap.release ()
cv.destroyAllWindows ()
7.2 Annexe 2: Yolo v7 et la camera 3d
Ceci est un commentaire
import cv2
import torch
import pyrealsense2 as rs
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression
\# Charger le modele de YOLOOV7Y
weights = ’model.pt’ \# Remplacez par le chemin vers

votre modele

model = attempt_load(weights, map_location=’cpu’) #

Charger le modele sur CPU
names = model.names # Classes

d’objets

Initialisation de la camera Intel RealSense

pipeline = rs.pipeline()

config = rs.config()

config.enable_stream(rs.stream.
rs.format.bgr8, 30) # Flux

config.enable_stream(rs.stream.
rs.format.z16, 30) # Flux

pipeline.start(config)

try:
while True:

24

color, 640, 480,
RGB

depth, 640, 480,
de profondeur

2)

Capture des frames de la camera
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame ()
depth_frame = frames.get_depth_frame ()

if not color_frame or not depth_frame:
continue

Convertir les frames en images OpenCV
color_image =
np.asanyarray(color_frame.get_data())

Pretraitement pour YOLOv7
img = cv2.resize(color_image, (640, 480))
img = torch.from_numpy(img) .permute(2, O,
1) .float ()
img /= 255.0 # Normalisation
if img.ndimension() == 3:
img = img.unsqueeze (0)

Prediction avec YOLOv7

mettre dans une fonction de ligne 40 a 61

pred = model(img, augment=False) [0]

pred = non_max_suppression(pred, 0.25, 0.45)

Conf = 0.25, IoU = 0.45

Dessiner les boites englobantes et afficher la

distance

for i, det in enumerate{(pred): # Parcourir les

detections
if len(det):
for d in det: # d = (x1, yl1, x2,
conf, cls)

y2,

x1, y1, x2, y2, conf, cls = d[:6]
xl, y1, x2, y2 = int(x1), int(yl),

int(x2), int(y2)

Calculer le centre de la boite

center_x = (x1 + x2) // 2
(y1 + y2) // 2

center_y

Obtenir la distance de 1’objet

distance =

25

depth_frame.get_distance(center_x,
center_y)

59 # Afficher la boite et 1les
informations

60 label = f"{names[int(cls)]}
{conf:.2f} ({distance:.2f}m)"
61 cv2.rectangle(color_image, (x1, y1),

(x2, y2), (0, 255, 0), 2)

62 cv2.putText (color_image, label, (x1,
yi1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)

63 # 1ici poser la question

64 # comparer la question avec 'quel objet"

65 # appeler la fonction et dire les objets

66 cv2.imshow("RealSense YOLOv7", color_image)
67

68 if cv2.waitKey (1) == 27:

69 break

71 finally:

72 # Liberer les ressources
73 pipeline.stop ()

74 cv2.destroyAllWindows ()

7.3 Annexe 3: Algorithme de la gestion des ilots de
confiance

1 Debut

N

3 // Definition de la table des actions et leurs mots
associes
4+ Table Actions_Mots = A

5 "voir" = ["apercevoir", "regarder", "observer",
"montrer"],

6 "entendre" = ["ecouter", "percevoir", "ouir"],

7 "parler" = ["dire", "exprimer", "communiquer",
"prononcer"],

8 "marcher" = ["avancer", "se deplacer", "courir"]

26

// Fonction qui identifie l’action la plus probable en

comparant les mots

Fonction Identifier_Action(phrase)
// Diviser la phrase en mots individuels
mots_phrase = Diviser (phrase, " ")

// Initialisation des scores pour chaque action

Scores_Actions = Table Vide

// Parcourir chaque action et ses mots associes
Pour chaque action, synonymes dans Actions_Mots Faire

// Calcul de l’intersection des mots de la

phrase et des synonymes
score = 0
Pour chaque mot dans mots_phrase Faire
51 mot appartient a synonymes Alors

score = score + 1
FinSi
FinPour
// Stocker le score pour l’action
Scores_Actions[action] = score
FinPour

// Trouver l’action avec le score maximal
Meilleure_Action = ""
Max_Score = 0

Pour chaque action, score dans Scores_Actions

Si score > Max_Score Alors

Max_Score = score
Meilleure_Action = action
FinSi

FinPour

// Retourner 1l’action la plus probable ou ""
aucune correspondance
Retourner Meilleure_Action
FinFonction

// Execution de l’algorithme avec des exemples

Afficher (Identifier_Action("Je veux apercevoir et

observer le paysage")) // Sortie : "voir"

Faire

si

Afficher (Identifier_Action("Peux-tu ecouter et percevoir

27

ot
o

¥

ce son")) // Sortie : "entendre"
Afficher (Identifier_Action("Je vais courir et me

deplacer rapidement")) // Sortie : "marcher"
Afficher (Identifier_Action("Cette phrase n’a aucun mot
pertinent")) // Sortie : ""

Fin

7.4 Annexe 4: Client Android pour la reconnaissance
vocale

package org.vosk.demo;

import android.Manifest;

import android.app.Activity;

import android.content.pm.PackageManager;

import android.os.Bundle;

import android.text.method.ScrollingMovementMethod;
import android.util.Log;

import android.widget.Button;

import android.widget.TextView;

import android.widget.ToggleButton;

import org.vosk.LibVosk;

import org.vosk.LogLevel;

import org.vosk.Model;

import org.vosk.Recognizer;

import org.vosk.android.RecognitionListener;
import org.vosk.android.SpeechService;
import org.vosk.android.SpeechStreamService;
import org.vosk.android.StorageService;

import java.io.IOException;
import java.io.InputStream;

import androidx.annotation.NonNull;
import androidx.core.app.ActivityCompat;

import androidx.core.content.ContextCompat;

import android.os.Bundle;
import android.util.Log;

import androidx.appcompat.app.AppCompatActivity;

import java.io.OutputStream;
import java.net.Socket;

28

32 public class VoskActivity extends Activity implements
39 RecognitionListener {

41 static private final int STATE_START = O0;
1

42 static private final int STATE_READY = 1;
43 static private final int STATE_DONE = 2;
44 static private final int STATE_FILE = 3;
45 static private final int STATE_MIC = 4;

17 /* Used to handle permission request x*/
48 private static final int
PERMISSIONS_REQUEST_RECORD_AUDIO = 1;

50 private Model model;

51 private SpeechService speechService;

52 private SpeechStreamService speechStreamService;

53 private TextView resultView;

54

56 private static final String TAG = "SocketClient";

57 private static final String RASPBERRY_PI_IP =
"192.168.1.27"; // Remplacez par 1’IP du Raspberry Pi

58 // private static final String RASPBERRY_PI_IP =
"192.168.1.30 "; // IP du raspberry ecran

59 private static final int PORT = 12345; // Doit
correspondre au port du serveur

60 private OutputStream outputStream;

61 private Socket socket;

62

63 @0verride

64 public void onCreate(Bundle state) {

65 super.onCreate (state) ;

66 setContentView (R. layout.main) ;

68 // Setup layout

69 resultView = findViewById(R.id.result_text);

70

71 setUiState (STATE_START) ;

73 findViewById(R.id.recognize_file).setOnClickListener (view

-> recognizeFile());

74 findViewById(R.id.recognize_mic).setOnClickListener (view
-> recognizeMicrophone());

75 ((ToggleButton)
findViewById(R.id.pause)).setOnCheckedChangelListener ((view,
isChecked) -> pause(isChecked));

76

29

~

LibVosk.setLogLevel (LogLevel.INF0);

0

I B

9 // Check if user has given permission to record

audio, init the model after permission is granted
80 int permissionCheck =
ContextCompat.checkSelfPermission(getApplicationContext (),
Manifest.permission.RECORD_AUDIO) ;

81 if (permissionCheck !=
PackageManager . PERMISSION_GRANTED) {
82 ActivityCompat.requestPermissions (this, new

String[]{Manifest.permission.RECORD_AUDIO},
PERMISSIONS_REQUEST_RECORD_AUDIO);

83 } else {

84 initModel () ;

85 }

86 }

87

88

89 private void initModel () {

90 StorageService.unpack(this, "model-en-us", "model",
91 (model) -> {

92 this.model = model;

93 setUiState (STATE_READY);
04 },

95 (exception) -> setErrorState("Failed to
unpack the model" +
exception.getMessage ()));

96 }

o7

98 @0verride

99 public void onRequestPermissionsResult (int requestCode,
100 @NonNull Stringl[]

permissions,
@NonNull int []
grantResults) A
101 super .onRequestPermissionsResult (requestCode,
permissions, grantResults);
102

103 if (requestCode == PERMISSIONS_REQUEST_RECORD_AUDIOQ)
{

104 if (grantResults.length > O && grantResults[0]

== PackageManager .PERMISSION_GRANTED) A
105 // Recognizer initialization is a
time-consuming and it involves I0,

106 // so we execute it in async task

107 initModel () ;

108 } else {

109 finish () ;

110 }

30

@0verride
public void onDestroy () {
super .onDestroy () ;

if (speechService != null) {
speechService.stop();
speechService.shutdown () ;

}
if (speechStreamService != null) {
speechStreamService.stop();
}
}
@0verride

public void onResult(String hypothesis) {
resultView.append (hypothesis + "\n");
new Thread (() -> sendToServer (hypothesis)).start();

@0verride

public void onFinalResult(String hypothesis) {
resultView.append (hypothesis + "\n");
new Thread (() -> sendToServer (hypothesis)).start();
setUiState (STATE_DONE) ;

if (speechStreamService != null) {
speechStreamService = null;
3
3
@0verride

public void onPartialResult(String hypothesis) {
// resultView.append (hypothesis + "aaa\n");
}

@0verride

public void onError (Exception e) A
setErrorState (e.getMessage ());

}

@0verride

public void onTimeout () A
setUiState (STATE_DONE) ;

}

private void setUiState(int state) {

31

- -
N~
> =

v

N N NN
obon §

r

switch (state) {
case STATE_START:
resultView.setText

(R.string.preparing);

resultView.setMovementMethod (new
ScrollingMovementMethod ());

findViewById(R.id.
findViewById(R. id.
findViewById(R. id.
break;
case STATE_READY:
resultView.setText
((Button)
findViewById(R.
findViewById(R. id.
findViewById(R.id.
findViewById(R.id.
break;
case STATE_DONE:
((Button)
findViewById(R.
((Button)
findViewById(R.
findViewById(R. id.
findViewById(R. id.
findViewById(R.id.
((ToggleButton)
findViewById(R.
break;
case STATE_FILE:
((Button)
findViewById(R.
resultView.setText
findViewById (R. id.
findViewById(R. id.
findViewById(R. id.
break;
case STATE_MIC:
((Button)
findViewById(R.
resultView.setText
findViewById(R.id.
findViewById(R.id.
findViewById(R.1id.
break;
default:

recognize_file).setEnabled (false);
recognize_mic).setEnabled(false);
pause) . setEnabled ((false));

(R.string.ready);

id.recognize_mic)) .setText(R.string.recogniz
recognize_file) .setEnabled (true);
recognize_mic).setEnabled(true);

pause) .setEnabled ((false));

id.recognize_file)).setText(R.string.recogni:

id.recognize_mic)) .setText(R.string.recogniz
recognize_file).setEnabled(true);
recognize_mic).setEnabled (true);

pause) .setEnabled ((false));

id.pause)) .setChecked(false);

id.recognize_file)).setText(R.string.stop_£fi:
(getString (R.string.starting));
recognize_mic).setEnabled(false);
recognize_file).setEnabled(true);

pause) . setEnabled ((false));

id.recognize_mic)).setText (R.string.stop_mic:
(getString (R.string.say_something));
recognize_file).setEnabled(false);
recognize_mic).setEnabled(true);

pause) .setEnabled ((true));

throw new IllegalStateException("Unexpected
value: " + state);

32

218

private void setErrorState(String message) {
resultView.setText (message);

((Button)

findViewById(R.id.recognize_mic)).setText(R.string

findViewById (R.id.recognize_file) .setEnabled(false);

findViewById(R.id.recognize_mic).setEnabled(false);

private void recognizeFile() {

if (speechStreamService
setUiState (STATE_DONE) ;

speechStreamService.stop();

speechStreamService

} else {

'= pull) {

= null;

setUiState (STATE_FILE);

try A{
Recognizer rec

16000.f, "[\"one zero zero zero one\'",
"\"oh zero one two three four five

new Recognizer (model,

six seven eight nine\",

\" [unkI\"1");

InputStream ai

S

= getAssets () .open(

"10001-90210-01803.wav") ;
if (ais.skip(44)
I0Exception("File too short");

!'= 44) throw new

speechStreamService = new
SpeechStreamService (rec, ais, 16000);
speechStreamService.start (this);
} catch (IOException e) {
setErrorState(e.getMessage ());

}

private void recognizeMicrophone () {
if (speechService != null) {
setUiState (STATE_DONE) ;
speechService.stop();

speechService = null;
} else {
setUiState (STATE_MIC) ;
try A
Recognizer rec = new Recognizer (model,
16000.0f) ;
speechService = new SpeechService(rec,
16000.0f) ;

33

n

+

.recognize_micropl

N

speechService.startListening (this);

} catch (IOException e) {
setErrorState(e.getMessage());

}

}

private void sendToServer (String text) {

try (Socket socket = new Socket (RASPBERRY_PI_IP,

PORT) ;
OutputStream outputStream =
socket.getOutputStream()) {

outputStream.write(text.getBytes());

outputStream.flush () ;

Log.d(TAG, "Texte envoye au serveur "+ text);
} catch (Exception e) {
Log.e(TAG, "Erreur lors de l’envoi au serveur

" + e.getMessage());

private void pause(boolean checked) {
if (speechService != null) {
speechService.setPause (checked) ;

}

Listing 1: Client Android

7.5 Annexe 5: Application Python sur Raspberry ou

PC

import cv2

import torch

import pyrealsense2 as rs

import numpy as np

import pyttsx3 # synthese vocale

import os

import pyaudio

import threading

import queue

from models.experimental import attempt_load

34

from utils.general import non_max_suppression
from vosk import Model, KaldiRecognizer
import socket

import json

HAEHBHAAHHAH BB H BB H U H AR HBSHARHAFHAS R AR HASHA SRR HAH BB H BB H AR BB H A HBSH AR R RS

HAHAHHAHHAHBAH ARG H BB H AR H BB HARHARHAA G AR R AR HAH B AR HAH B R BB R AR H B H ARG R AR R AR R AR

#

des objets detectable par YOLO
#

translations = {
"person": '"personne",
"bicycle": "velo",
"car": "voiture",
"motorbike": "moto",
"aeroplane'": "avion",
"bus": "bus",
"train": "train",
"truck": "camion",
"boat": "bateau",
"traffic light": "feu de signalisation"
"fire hydrant": "borne d’incendie",
"stop sign": "panneau stop",
"parking meter": "parcmetre',
"bench": "banc",
"bird": "oiseau",
"cat": "chat",
"couch": "canape",
"dog": "chien",
"horse": "cheval",
"sheep": "mouton",
"cow": "vache'",
"elephant": "elephant",
"bear": "ours",
"zebra'": "zebre",
"giraffe": "girafe",
"backpack": "sac a dos",
"umbrella": "parapluie",
"handbag": "sac a main",
"tie": "cravate",
"suitcase": "valise'",
"frisbee": "frisbee'",
"skis": "skis",

35

dictionnaire

52 "snowboard": "planche de snowboard",

53 "sports ball": "balle de sport",

54 "kite": "cerf-volant",

55 "baseball bat": "batte de baseball',
56 "baseball glove": "gant de baseball",
57 "skateboard": "skateboard",

58 "surfboard": "planche de surf",

59 "tennis racket": '"raquette de tennis",
60 "bottle": "bouteille",

61 "wine glass": "verre a vin'",

62 "cup": "tasse",

63 "fork": "fourchette",

64 "knife": "couteau",

65 "spoon": "cuillere",

66 "bowl": "bol",

67 "banana": "banane",

68 "apple'": "pomme",

69 "sandwich": "sandwich",

70 "orange": "orange",

71 "broccoli": "brocoli",

72 "carrot": "carotte",

73 "hot dog": "hot dog",

74 "pizza'": "pizza",

75 "donut": "beignet",

76 "cake": "gateau",

77 "chair": "chaise",

78 "sofa": "canape",

79 "pottedplant": "plante en pot",

80 "bed": "1lit",

81 "diningtable": "table a manger",

82 "toilet": "toilettes",

83 "tvmonitor": "ecran de television",
84 "laptop": "ordinateur portable",

85 "mouse": "souris",

26 "remote": "telecommande",

87 "keyboard": "clavier",

88 "cell phone": "telephone portable",
89 "microwave": "micro-ondes",

920 "oven": "four'",

91 "toaster": "grille-pain",

92 "sink": "evier",

93 "refrigerator": "refrigerateur",

94 "book": "livre",

36

95

96

97

98

99

100

101

102

103

104

105

106

107

109

110

111

112

113

114

115

116

117

118

119

"clock": "horloge",

"vagse": "vase'",

"scissors": "ciseaux",

"teddy bear": "ours en peluche",
"hair drier": "seche-cheveux",
"toothbrush": "brosse a dents",
"tv": "television"

HHHSSSSS AR S S SRS AR RS S AR RS SR R S SRS AR R R RS S ER R S S R R S R
Les ilots de
confiance pour la reconnaissance vocale
#
HHHSSSHS AR S S SRR S S AR RS SR R S SRR R S S R R RS SRR R R R

ilots_de_confiance={

"voir": ["voir", "apercevoir", "objets", "detecter",
"montrer", "autour"],

"aider" : ["aider", "expliquer", "aide"],

"quitter" : ["quitter", "stop", "sortir", "arreter"],

"proche" : ["proche", "pres"],

"loin" : ["loin", "lointain", "eloigne"],

"personne": ["personne", "vois-tu"l],

"girafe": ["girafe", "vois-tu"],

"oiseau": ["oiseau", "vois-tu"],

"clavier": ["clavier", "vois-tu"],

"souris": ["souris", "vois-tu"],

"voiture": ["voiture", "vois-tu"],

"cheval": ["cheval", "vois-tu"],

"ciseaux": ["ciseaux", "vois-tu"],

"bouteille": ["bouteille", "vois-tu"],

"bonjour": ["bonjour", "salut"],

"micro": ["micro", "microphone"],

"micro_ouvert": ["micro", "ouvert"],

"micro_ferme": ["micro","ferme"]

HERBAAAARAARAAAARBAA R AR BB R R R R BB R AR RABAAABRA R AR BB B R AR BB RA AR AR AR AR
Initialisation du modele de la bibliotheque
Vosk pour la reconnaissance de la parole

37

144

145

146

147

160

161

162

163

164

165

166

167

168

169

#
HAHAHBAH BB H AR H ARG H AR H AR H BB H AR HAFH SR AR HA SRR B AR B H BB H ARG HEGHUSH ARG H B R AR R AR H

def initialize_vosk_model (model_path):
if not os.path.exists(model_path):
raise FileNotFoundError (f"Le modele specifie a
{model_path} est introuvable.")
print ("Chargement du modele Vosk...")
model = Model (model_path)
print ("Modele charge avec succes.")
return model

HHARAAAAARAAAAA R BB AR R BB BB BB BB R R AR R AR BB BB R AR BB B R AR RRR R AR AR SRR H R
Dire une phrase
par synthese vocale
#
HERAAAAARARAAAAAHBAA R AR B BB R B R BB R AR ARARHARBRA R AR BB B R BB R BB AR AR AR H AR

def speak(text):
engine = pyttsx3.init ()
engine.setProperty("voice", "french")
engine.setProperty("rate", 150)
engine.say(text)
engine.runAndWait ()

sEEEEEEEEEEEEE SRR R R SRR R RS RS SR T
#
Raspberry ou Android

#
HHHAH G H SR SRS H SR RS H A S H AR RS H AR A SRS SRS H S SRR RS SSRGS R R A H

def recognize_speech(vosk_model,q, choix):
if choix == 1:

recognizer = KaldiRecognizer(vosk_model, 16000)
mic = pyaudio.PyAudio ()
stream = mic.open{(format=pyaudio.palntl6,
channels=1,
rate=16000,

input=True,

38

frames_per_buffer=8192)
stream.start_stream()
print ("Parlez dans le microphone...")
try:
while True:
data = stream.read (4096,
exception_on_overflow=False)
if recognizer.AcceptWaveform(data):

result =
json.loads(recognizer.Result())
qg.put(result.get("text", "").lower())

except KeyboardInterrupt:
print ("Arret de la reconnaissance vocale.")
finally:
Stream.stop_stream()
stream.close ()
mic.terminate ()
elif choix == 2:
with socket.socket(socket.AF_INET,
socket .SOCK_STREAM) as server_socket:
server_socket .bind ((HOST, PORT))
server_socket.listen ()
while True:
client_socket, client_address =
server_socket.accept ()
with client_socket:
data =
client_socket.recv(1024) .decode(’utf-82)
if data
try:
parsed_data =
json.loads(data)
extracted_value =
parsed_data.get ("text",
None)
if extracted_value:
q.put(extracted_value.lower())
except json.JSONDecodeError:
print("Failed to parse
data as JSON.")

HARAHHAHBAHBAH ARG H BB H AR H BB HARHARHAA B AR R AR BAH B AR HAH B H AR ARG HBSH AR ARG R AR R AR H

39

Detection d’objets par YOLO
#
205 HESHAHGHBHSSSSSA RS HSSS AR RS SS S A RS SSSS RS S S SR E RS S S AR S SRR
206

207 def detection_objet(objets_courant)

208 global distance_min
209 global distance_max
210 global objet_min
211 global objet_max
212 global compteur_frame
213
214 # Pretraitement pour YOLOv7
215 img = cv2.resize(color_image, (640, 480))
216 img = torch.from_numpy(img).permute(2, 0, 1).float ()
217 img /= 265.0 # Normalisation
218 if img.ndimension() == 3:
219 img = img.unsqueeze (0)
220 # Prediction avec YOLOvY
221 pred = model(img, augment=False) [0]
222 pred = non_max_suppression(pred, 0.3, 0.45) # Conf
= 0.25, IoU = 0.45
223 # Dessiner les boites englobantes et afficher la
distance
224 for i, det in enumerate(pred): # Parcourir les
detections
225 if len(det):
226 for d in det: # d = (x1, y1, %2, y2, conf,
cls)
227 xl, y1, x2, y2, conf, cls = d[:6]
228 x1, y1, x2, y2 = int(x1), int(yl),
int (x2), int(y2)
229 # Calculer le centre de la boite
230 center_x = (x1 + x2) // 2
231 center_y = (yl + y2) // 2
232 # Obtenir la distance de 1’objet
233 distance =
depth_frame.get_distance(center_x,
center_y)
234 # Afficher la boite et les informations
235 label = f"{names[int(cls)]} {conf:.2f}
({distance:.2f}m)"
236 objet = names[int(cls)]

40

237 if distance < distance_min:

238 distance_min = distance

239 objet_min = objet

240 if distance > distance_max:

241 distance_max = distance

242 objet_max = objet

243 if objet not in objets_courants:

244 objets_courants.append(objet)

245 translation = translations.get(objet,
"Mot non trouve")

246 cv2.rectangle(color_image, (x1, y1),
(x2, y2), (0, 255, 0), 2)

247 cv2.putText (color_image, label, (x1, yil

- 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
248 cv2.imshow ("RealSense YOLOv7", color_image)

251 HHARBAHARBRBABRARBBRAHBRARBHRH AR RAABR R R AR RHARB R AR A BB BB R AR ARG AR R R BB R A EHRY
252 # Programme

principal

#
253 HHAAAHBHBHAHARAHBBHAAAAAHBRBHAAAA AR R BHAAR AR BB R AR AR BB BHAA AR AR R R B SRR R

255 # Charger le modele YOLOvVY

256 welghts = ’model.pt’ # Remplacez par le chemin vers
votre modele

257 model = attempt_load(weights, map_location=’cpu’) #
Charger le modele sur CPU

258 names = model.names # Classes d’objets

260 # Initialisation de la camera Intel RealSense

261 pipeline = rs.pipeline()

262 config = rs.config()

263 config.enable_stream(rs.stream.color, 640, 480,
rs.format.bgr8, 30) # Flux RGB

264 config.enable_stream(rs.stream.depth, 640, 480,
rs.format.z16, 30) # Flux de profondeur

265 pipeline.start(config)

266

267 vosk_model_path = "vosk-model-small-fr-0.22"

268 #vosk_model_path =
"vosk-model -small-fr-0.22/vosk-model -small-fr-0.22"

41

Chemin vers le modele Vosk
260 vosk_model = initialize_vosk_model(vosk_model_path)

271 # Initialiser le traducteur

272 # translator = Translator ()
>3 engine = pyttsx3.init ()
272 data=""

275 distance_min=1.0

276 distance_max=0.0

277 objet_min=""

27z objets_courants=[]
279 sauvegarde_liste=[]
250 compteur_frame=0

251 etat_micro=True

283 HOST = 20.0.0.0° # ecoutez sur toutes les interfaces
reseau
28 PORT = 12345 # Assurez-vous que ce port correspond

a celui de l’application Android

206 try:

287 objet=""

288 nb_objets=0

289 q = queue.Queue ()

290 print ("Assistant active. Parlez pour interagir avec
la camera.")

201 speak("Assistant active. Parlez pour interagir avec

la camera.")
292 # Thread pour la reconnaissance vocale
203 while (True):
204 choix=int (input ("voulez-vous utiliser le
raspBerry (1) ou Android (2) pour la
reconnaissance vocale 7"))

295 if choix !=1 and choix != 2:

206 print ("I1 faut taper un ou 2")
297 continue

298 else

299 break

300 speech_thread =

threading.Thread (target=recognize_speech,
args=(vosk_model,q,choix,))

301 speech_thread.start ()

302 while True:

42

action=""

while not q.empty():
remaining_data = q.get_nowait ()
action=""

try:
data=|| n

data = g.get(timeout=1) # Timeout pour

eviter de rester bloque
if data is None: # Signal d’arret
break
except queue.Empty:

pass # Continuer a tourner sans bloquer

Capture des frames de la camera
frames = pipeline.wait_for_frames ()
color_frame = frames.get_color_frame ()
depth_frame = frames.get_depth_frame ()
if not color_frame or not depth_frame:
continue
Convertir les frames en images OpenCV
color_image =
np.asanyarray(color_frame.get_data())
parseur d’ilots de confiance
mots_vocaux = data.split()
action=""
ensemblel=set (mots_vocaux)
ensemble2=set ()
nb_elements_commun=0
if (len(mots_vocaux) > 0):
print("reconnaissance=", data)
for cle, valeurs in
ilots_de_confiance.items ():
for valeur in valeurs:
ensemble2.add (valeur)
print ("ensemblel=", ensemblel,
"ensemble2=", ensemble2)
communs=ensemblel & ensemble?2

if len(communs) > nb_elements_commun:

nb_elements_commun =
nb_elements_commun + 1
action=cle
ensemble2=set ()
action engendre
print ("action = ", action)

43

366

367

368

369

370

if action == "micro":

if etat_micro == True:
speak("le microphone est disponible")
action=""

else

speak("le microphone n’est pas
disponible™")
action=""
elif action=="micro_ferme":
etat_micro=False
action=""
speak ("ferme")
elif action=="micro_ouvert":
etat_micro=True
speak ("ouvert")
action=""
data=""
if etat_micro==False
continue

elif actiomn=="voir":
speak ("vous voulez savoir ce que 1l’on voit
?ll)

print("les objets que 1l’o0on voit sont ")
liste_mots_a_dire=""
for value in objets_courants:
nom=translations.get(value, "mot non
trouve")
print (nom)
liste_mots_a_dire+=nom
liste_mots_a_dire += " "
speak(liste_mots_a_dire)
print ("fin des objets reconnus")
data=""
elif action=="aider":
speak ("""
Je peux detecter les objets devant vous et
indiquer leur distance.
Dites ’les objets’ pour obtenir une liste
des objets detectes.
Dites ’quel est 1’objet le plus proche’ pour
connaitre l’objet le plus proche.
Dites ’quitte l’assistant’ pour fermer
l’assitant.

44

Qe nmun
377

378 data=""

379 elif action=="quitter":

380 speak ("Assistant desactive. A bientot.")

381 pipeline.stop ()

382 cv2.destroyAllWindows ()

383 speech_thread. join ()

384 exit ()

385 elif action=="proche":

386 speak ("L’objet le plus proche est ")

387 speak(translations.get(objet_min, "Mot non
trouve"))

388 data=""

389 action=""

390 elif action == "loin":

391 speak("L’objet le plus eloigne est ")

392 speak(translations.get(objet_max, "Mot non
trouve"))

393 data=""

394 action=""

395 elif action=="personne":

396 speak ("Vous voulez savoir si je vois une
personne 7")

397 if "person" in objets_courants

398 speak ("Oui, j’en vois une')

399 else

400 speak("non, je n’en vois pas")

401 elif action=="girafe":

402 speak ("Vous me demandez s’il y a une girafe
?n)

403 if "giraffe" in objets_courants

104 speak ("Oui, j’en vois une')

405 else

406 speak("non, je n’en vois pas")

407 elif action == "voiture'":

408 speak ("vous voulez savoir si je vois une
voiture 7")

409 if "car" in objets_courants:

110 speak ("Oui, j’en vois une')

411 else:

412 speak("non, je ne vois pas de voiture")

413 elif action == "cheval":

414 speak ("Vous me demandez s’il y a un cheval?")

45

if "horse" in objets_courants:
speak ("Oui, j’en vois un")
else:
speak("non, je ne vois pas de cheval")
elif action=="oiseau":
speak ("Vous me demandez si je vois un
oiseau 7")
if "bird" in objets_courants:
speak ("Oui, j’en vois un")
else:
speak("non, je n’en vois pas")
elif actiom=="clavier":
speak ("Vous me demandez si je vois un
clavier 7")
if "keyboard" in objets_courants:
speak ("Oui, je vois un clavier")
else:
speak("non, je ne vois pas de clavier")
elif action=="souris":
speak ("Vous me demandez si je vois une
souris 7")
if "mouse" in objets_courants:
speak ("Oui, je vois une souris")
else:
speak("non, je ne vois pas de souris")
elif action=="ciseaux'":
speak ("Vous me demandez si je vois un ciseau
?")
if "scissors'" in objets_courants:
speak ("Oui, je vois une paire de ciseau")
else:
speak("non, je ne vois pas de ciseau")
elif action=="bouteille'":
speak ("Vous me demandez si je vois une
bouteille 7")
if "bottle" in objets_courants:
speak ("Oui, j’en vois une')

else:
speak("non, je n’en vois pas")
elif action=="bonjour":
speak ("bonjour, je suis votre assistant")
elif cv2.waitKey (1) == 27:
break

46

153 else

454 distance_min=1.0

155 distance_max=0.0

456 objet_min=""

157 objet_max=""

158 detection_objet (objets_courants)

459 print ("Les objets reconnus en cours sont :")

160 for value in objets_courants:

461 print(translations.get(value, "mot non
trouve"))

462 compteur_frame = compteur_frame + 1

163 if compteur_frame == 20:

464 compteur_frame 0

165 objets_courants=1[]

466 data=""

167 action=""

16z finally:

169 cv2.destroyAllWindows ()

47

	Introduction
	Objectifs
	La mise en place du projet

	Etat de l'art
	La canne EVAL multi-capteurs
	Une canne connectée intelligente multi-technologie radio
	Le projet ICanne
	C'est quoi YOLO ?

	Le déroulement du projet
	Première version : test et choix d'une version de YOLO
	Deuxième version : Intégration de cette première version avec la caméra 3d
	Troisième version : Développement d'une version avec Reconnaissance vocale et synthèse vocale sur PC
	Quatrième version : Portage de la version précédente sur Raspberry
	Cinquième version : Développement d'un client Androïd
	Sixième version : Prise en compte de certaines remarques de Mr Uzan
	Perspectives : Integration de Rasa et de chatGPT

	Conclusions
	Bibliographie
	References
	Webographie
	References
	Annexes
	Annexe 1: Test de Yolo v7
	Annexe 2: Yolo v7 et la camera 3d
	Annexe 3: Algorithme de la gestion des îlots de confiance
	Annexe 4: Client Androïd pour la reconnaissance vocale
	Annexe 5: Application Python sur Raspberry ou PC

