
Projet de conception d'une canne

intelligente

Lefebvre Florian

January 22, 2025

1

Titre : Projet de conception d'une canne intelligente

Résumé : Ce projet vise à développer une canne intelligente pour per-
sonnes aveugles en intégrant une caméra et un système de vision arti�cielle
capable de détecter et identi�er les objets environnants. Grâce à des algo-
rithmes de traitement d'image et d'intelligence arti�cielle, la caméra analyse
en temps réel l'environnement et détecte les obstacles d'intérêts. Ces in-
formations sont ensuite transmises à l'utilisateur via des signaux audio pour
faciliter la navigation en toute sécurité. L'objectif est d'améliorer l'autonomie
et la mobilité des personnes malvoyantes dans leur quotidien.

2

Contents

1 Introduction 4
1.1 Objectifs . 4
1.2 La mise en place du projet . 4

2 Etat de l'art 5
2.1 La canne EVAL multi-capteurs 5
2.2 Une canne connectée intelligente multi-technologie radio . . . 6
2.3 Le projet ICanne . 6
2.4 C'est quoi YOLO ? . 7

3 Le déroulement du projet 8
3.1 Première version : test et choix d'une version de YOLO 8
3.2 Deuxième version : Intégration de cette première version avec

la caméra 3d . 11
3.3 Troisième version : Développement d'une version avec Recon-

naissance vocale et synthèse vocale sur PC 13
3.4 Quatrième version : Portage de la version précédente sur Rasp-

berry . 16
3.5 Cinquième version : Développement d'un client Androïd . . . 17
3.6 Sixième version : Prise en compte de certaines remarques de

Mr Uzan . 19
3.7 Perspectives : Integration de Rasa et de chatGPT 20

4 Conclusions 21

5 Bibliographie 21

References 21

6 Webographie 22

References 22

7 Annexes 22
7.1 Annexe 1: Test de Yolo v7 . 22
7.2 Annexe 2: Yolo v7 et la camera 3d 24
7.3 Annexe 3: Algorithme de la gestion des îlots de con�ance . . . 26
7.4 Annexe 4: Client Androïd pour la reconnaissance vocale . . . 28
7.5 Annexe 5: Application Python sur Raspberry ou PC 34

3

1 Introduction

1.1 Objectifs

L'objectif est de développer une canne intelligente capable d'aider les per-
sonnes aveugles ou malvoyantes à naviguer de manière plus autonome grâce
à la vision arti�cielle et l'intelligence arti�cielle. La canne devrait pouvoir
détecter les obstacles, reconnaître les objets environnants et fournir un retour
audio ou haptique à l'utilisateur.

Il est prévu d'utiliser un ou plusieurs capteurs à ultrasons pour détecter les
obstacles devant l'utilisateur. En cas de détection d'un obstacle à proximité
(moins d'un mètre, par exemple), la canne peut envoyer un signal haptique à
l'utilisateur via un moteur de vibration ou le prévenir avec un retour audio.

Avec la caméra et les algorithmes de vision arti�cielle (par exemple YOLO),
la canne pourrait détecter et reconnaître des objets spéci�ques (comme les
passages piétons, les panneaux de signalisation, les voitures, etc.). Cette
information serait communiquée à l'utilisateur via un retour audio.

Il est aussi prévu d'implémenter un agent conversationnel de base qui
pourrait répondre aux commandes vocales simples (par exemple, "Qu'y a-t-
il devant moi ?") ou fournir des informations sur les objets reconnus. Cet
assistant pourrait également être utilisé pour les retours audio sur la recon-
naissance d'objet.

1.2 La mise en place du projet

Pour ce projet, il a fallu faire l'achat de matériel dont la liste est la suivante
:

� Raspberry Pi (modèle avec capacité de traitement su�sant, comme le
Raspberry Pi 4).

� Caméra 3D Intel RealSense D435i

� Capteur à ultrasons (pour détecter les obstacles proches).

� Modules audio (haut-parleur ou casque Bluetooth pour les retours au-
dio).

� Moteur de vibration (pour le retour haptique).

� Batterie portable (pour alimenter le Raspberry Pi).

� Boutons ou interrupteurs (pour contrôler certaines fonctionnalités).

4

Les logiciels nécessaires pour ce projet sont :

� Raspbian OS ou une autre distribution compatible avec le Raspberry
Pi.

� OpenCV et Yolo pour la vision arti�cielle.

� Libraries Python pour les capteurs (comme RPi.GPIO ou pigpio pour
les capteurs à ultrasons).

� Text-to-Speech (TTS) (comme eSpeak ou Google Text-to-Speech) pour
le retour audio.

� Speech Recognition (optionnel, pour les commandes vocales).

2 Etat de l'art

Plusieurs études ont été mené pour concevoir une canne pour aveugle dotée
de possibilités innovantes comme la détection d'obstacles. Nous présentons
ici certaines de ces études.

2.1 La canne EVAL multi-capteurs

Cette étude [WAN2021] propose une canne intelligente peu coûteuse, non
intrusive et multifonctionnelle, pour des personnes aveugles ou des person-
nes malvoyantes. Plusieurs capteurs tels qu'un accéléromètre/gyromètre, un
capteur à ultrasons, une résistance sensible à la force (FSR) et un capteur
de température ont été installés sur la canne pour collecter les données de la
démarche de l'utilisateur et de son environnement de marche. Bien que ces
capteurs n'aient pas été installés directement sur le corps humain, la fonction
de marche de l'utilisateur peut être décrite par certains d'entre eux, tels que
l'accéléromètre et le FSR, ce qui signi�e que la démarche de l'utilisateur peut
être analysée et évaluée pendant la marche avec la canne. En outre, sur la
base de l'analyse des données de l'accéléromètre, il est également possible de
détecter des événements indésirables tels que des chutes pendant la marche,
ce qui est utile pour le suivi de la santé de l'utilisateur. De plus, la canne
dispose d'un capteur à ultrasons utilisé pour détecter un obstacle devant la
canne et ce capteur fonctionnera avec un buzzer a�n de donner un signal
sonore à l'utilisateur lorsqu'un obstacle est déteint.

La canne EVAL représente une avancée signi�cative pour la mobilité des
personnes malvoyantes ou aveugles grâce à ses fonctionnalités technologiques
et ses capacités étendues. Cependant, son adoption est freinée par son coût,

5

sa complexité et des limitations techniques. Elle est idéale pour les personnes
ayant des besoins spéci�ques et capables de s'adapter à ces outils modernes,
mais elle ne remplace pas complètement la canne blanche traditionnelle, sim-
ple, �able et économique.

2.2 Une canne connectée intelligente multi-technologie

radio

Cette étude [VAL2021] présente le développement d'une canne intelligente,
dotée de plusieurs technologies de communication sans �l, visant à améliorer
la mobilité et la sécurité des personnes âgées ou à mobilité réduite. L'objectif
principal de cette canne est de fournir une aide supplémentaire aux util-
isateurs en intégrant des fonctionnalités de détection et de communication.
L'étude porte sur plusieurs aspects techniques, allant de la conception à la
réalisation, ainsi que sur les tests e�ectués pour s'assurer de son e�cacité.
La canne est équipée de di�érentes technologies radio (comme le Bluetooth
et le Wi-Fi), permettant de collecter et de transmettre des données relatives
à la position, à l'environnement et à l'état de santé de l'utilisateur. La canne
intègre des capteurs pour surveiller divers paramètres tels que la distance,
l'orientation et les obstacles, et pour fournir une aide en cas de chute ou
d'incident. De plus, elle permet une communication avec des appareils ex-
ternes, tels que des smartphones ou des dispositifs médicaux, facilitant ainsi
un suivi à distance par des proches ou des professionnels de la santé.

Les tests réalisés ont permis de valider la fonctionnalité de la canne et
son e�cacité dans la détection d'obstacles et dans la fourniture d'assistance
en cas d'urgence. L'article présente également les dé�s techniques rencontrés
pendant le développement de la canne, ainsi que les solutions apportées. En
résumé, cette étude propose une solution innovante et technologique visant
à améliorer la sécurité des utilisateurs et à faciliter la gestion de leur mobil-
ité, tout en assurant une surveillance à distance grâce aux technologies de
communication sans �l.

2.3 Le projet ICanne

Le projet ICanne [4] est une canne intelligente conçue pour améliorer la
mobilité et l'autonomie des personnes malvoyantes. Elle intègre une caméra
et des capteurs intelligents permettant de détecter et d'identi�er en temps
réel les obstacles et objets environnants.

Grâce à l'intelligence arti�cielle et la vision par ordinateur, ICanne anal-
yse l'environnement et alerte l'utilisateur via des signaux haptique (vibra-

6

tions) et audio (guidage vocal). Elle permet ainsi d'éviter les dangers tels
que les trottoirs, escaliers, poteaux ou véhicules en mouvement.

ICanne répond à un besoin réel : améliorer l'autonomie des personnes
aveugles ou malvoyantes. Actuellement, les cannes classiques ne permettent
pas d'identi�er précisément les obstacles complexes (véhicules en mouvement,
objets suspendus, etc.). En intégrant une vision arti�cielle et des capteurs
intelligents, cette innovation apporte une solution proactive aux dé�s de mo-
bilité urbaine.

2.4 C'est quoi YOLO ?

YOLO [SUN2020] est l'acronyme de You only look once est l'une des archi-
tectures les plus révolutionnaires dans le domaine de la détection d'objets.
Introduit pour la première fois en 2015, YOLO a transformé la manière dont
les objets sont détectés dans les images et les vidéos contrairement aux ap-
proches traditionnelles de détection d'objets qui divisent l'image en région
et passe chaque région à travers un classi�cateur séparé, YOLO adopte une
approche radicalement di�érente en traitant la détection comme un problème
de détection unique. Ce qui distingue YOLO, c'est sa capacité à traiter une
image entière en une seule passe à travers le réseau de neurones d'où son
nom ! You only look once. Cette approche permet non seulement de réaliser
des détection extrèmement rapides mais aussi d'obtenir une grande préci-
sion même dans des contextes en temps réel comme la surveillance vidéo,
la conduite autonome, et les applications mobiles. Au �l des années YOLO
a évolué à travers plusieurs versions, chacune apportant des améliorations
signi�catives en terme de vitesse, de précision et de capacité à détecter des
objets dans des environnements variés et complexes.

� La version de YOLOV1 introduit l'idée novatrice d'utiliser un réseau de
neurones unique pour la détection d'objets en temps réel révolutionnant
ainsi la façon dont ces tâches étaient abordées.

� Cette première version a rapidement été suivi par YOLOv2 également
connu sous le nom de YOLO9000. Elle a amélioré la précision du
modèle tout en introduisant des techniques avancées telles que les an-
cres (anchor boxes) permettant une meilleure gestion des objets de
di�érentes tailles.

� YOLOV3 a marqué une nouvelle étape importante en introduisant la
détection multi-échelle, une fonctionnalité clé qui a permis de mieux
détecté les objets à di�érentes tailles tout en améliorant la performance
globale et la �exibilité du modèle.

7

� Avec YOLOV4, l'accent a été mis sur l'optimisation pour la vitesse.
Cette version a combiné diverses techniques d'optimisation architec-
turale pour maximiser l'e�cacité du modèle le rendant encore plus
adapté aux application en temps réel.

� Ensuite, YOLOV5 est apparu bien qu'il n'ai pas été développé par les
auteurs originaux, il a rapidement gagné en popularité car grace à ces
performances remarquables, et à sa facilité d'utilisation. Cette version
a été largement adopté par la communauté pour sa capacité à s'adapter
à di�érents cas d'utilisation.

� Les versions YOLOV6 à YOLOV8 ont continué sur cette lancée en ap-
portant des optimisations supplémentaires pour diverses applications.
Ces versions ont vu des améliorations signi�catives en terme de struc-
tures réseaux et de techniques de formation renforçant la précision et
la rapidité du modèle.

� YOLOV9 a poursuivi cet e�ort en intégrant des avancées récentes dans
le domaine de la détection d'objets o�rant un bonne équilibre entre
rapidité et précision.

� Cependant, il existe des versions plus récentes comme YOLOV10 qui
continuent à perfectionner ces aspects et à introduire de nouvelles ar-
chitectures techniques de formation consolidant YOLO comme l'un des
modèles les plus performants pour les tâches de détection en temps réel.

3 Le déroulement du projet

Pour mener à bien ce projet, j'ai dû réaliser un ensemble de mini-projets
permettant d'avancer progressivement dans l'apprentissage des technologies
et une intégration sécurisée de chacune d'entre elles. Je vais présenter ici les
di�érentes versions que j'ai mis en place.

3.1 Première version : test et choix d'une version de

YOLO

Au début de ce projet, j'ai dû choisir un outil me permettant de détecter
des objets à l'aide d'une caméra. Il fallait prendre en compte le contexte
technique de ce projet qui était l'utilisation d'un Raspberry version 5. J'ai
fait le choix de YOLO car il a été optimisé pour des appareils à ressources

8

limitées comme le Raspberry Pi, les drones, ou les smartphones. Des vari-
antes légères comme Tiny YOLO sont conçues spéci�quement pour des en-
vironnements avec des contraintes matérielles. YOLO est conçu pour être
rapide, ce qui en fait un choix idéal pour des applications en temps réel. Con-
trairement à d'autres modèles de détection comme R-CNN, YOLO traite une
image entière en une seule passe du réseau, ce qui réduit considérablement
le temps de traitement. Les dernières versions de YOLO (comme YOLOV5
ou YOLOV8) sont optimisées pour le calcul sur GPU, o�rant une perfor-
mance exceptionnelle même sur des dispositifs embarqués. La version que
j'ai choisi pour ce projet est YOLOv7. YOLOv7 est une évolution des mod-
èles YOLO (You Only Look Once) pour la détection d'objets en temps réel.
Publié en 2022, il améliore les performances par rapport à ses prédécesseurs
comme YOLOv5 et YOLOv4. La �gure suivante extraite du site de github
: https:github.com/WongKinYiu/yolov7/tree/main permet de comparer
quelques di�érentes versions. Sur ce schéma, chaque YOLO a des perfor-
mances. Cela indique qui est le plus ou le moins rapide et le plus ou le moins
précis.

Figure 1: Comparaison de versions de YOLO

Dans le tableau ci-dessous, on voit que la précision de YOLOV7 est de
55.9

L'annexe 1 donne le programme de cette version et ci-dessous ses princi-
pales etapes:

9

https:github.com/WongKinYiu/yolov7/tree/main

Figure 2: Comparaison de versions de YOLO

1. Chargement du Modèle YOLO

� Chargement des �chiers de con�guration yolov7-tiny.cfg et des
poids du réseau yolov7-tiny.weights.

� Initialisation du réseau neuronal.

2. Lecture des Classes d'Objets

� Chargement du �chier coco.names, contenant les noms des classes
(ex. personne, voiture, chien...).

� Stockage des classes dans une liste.

3. Identi�cation des Couches de Sortie

� Récupération des noms des couches du réseau.

� Détermination des couches utilisées pour les prédictions.

4. Capture Vidéo en Temps Réel

� Ouverture de la caméra pour capturer des images en continu.

� Véri�cation de la connexion vidéo.

5. Prétraitement de l'Image

� Conversion de l'image en un format compatible avec YOLO (red-
imensionnement à 416x416 pixels, normalisation).

� Passage de l'image au réseau neuronal.

6. Exécution de YOLO et Analyse des Détections

10

� Extraction des scores de con�ance pour chaque classe détectée.

� Filtrage des détections avec un seuil minimal de 50%.

7. Calcul des Coordonnées des Boîtes Englobantes

� Conversion des coordonnées normalisées en pixels réels.

� Détermination de la position et de la taille des objets détectés.

8. A�chage des Résultats

� Dessin des boîtes englobantes sur l'image.

� A�chage des noms des objets et du niveau de con�ance.

9. Gestion des Entrées Utilisateur

� A�chage de la vidéo avec les détections en temps réel.

� Arrêt du programme lorsqu'on appuie sur la touche Échap.

10. Libération des Ressources

� Fermeture de la capture vidéo.

� Destruction des fenêtres OpenCV pour libérer la mémoire.

3.2 Deuxième version : Intégration de cette première

version avec la caméra 3d

La caméra utilisée dans ce projet est le modèle 3d Intel RealSense D435i.
Elle est une solution de choix pour les projets nécessitant une perception 3D
avancée couplée à des fonctionnalités de suivi spatial. Sa polyvalence et sa
facilité d'intégration en font un outil prisé dans des domaines variés allant
de la recherche académique aux applications industrielles avancées.

Pour faire cette deuxième version, il a fallu utiliser le kit de développement
SDK 2.0. Ce kit de développement est une solution clé en main conçue pour
les développeurs et ingénieurs souhaitant exploiter les capacités avancées de
la caméra D435i dans des applications de vision par ordinateur, robotique,
ou réalité augmentée. Ce kit intègre la caméra RealSense D435i et les outils
logiciels nécessaires pour faciliter son utilisation et son intégration dans divers
projets. L'annexe 2 de ce document contient le code en Python de cette
intégration de YOLO avec la caméra utilisée dans ce projet. Voici ci-dessous
les étapes générales de ce programme :

1. Chargement du modèle YOLOv7

11

� Chargement du �chier de poids (model.pt) sur le CPU.

� Récupération des noms des classes que YOLO peut détecter.

2. Initialisation de la caméra RealSense

� Activation des �ux RGB et profondeur avec une résolution de
640Ö480 à 30 FPS.

3. Boucle de capture d'images en temps réel

� Acquisition des frames (image couleur + profondeur).

� Prétraitement des images :

� Redimensionnement

� Normalisation

� Conversion en tenseur PyTorch

� Détection des objets avec YOLOv7.

� Filtrage des détections avec Non-Max Suppression (NMS)
pour éviter les doublons.

4. A�chage des résultats

� Pour chaque objet détecté :

� Récupération des coordonnées de la boîte englobante.

� Calcul de la distance de l'objet par rapport à la caméra.

� A�chage des boîtes vertes et labels sur l'image.

5. Interaction utilisateur

� Pose d'une question pour identi�er un objet.

� Comparaison avec "quel objet".

� Appel de la fonction de détection et a�chage des objets détectés.

6. Gestion de la fermeture du programme

� Si la touche Échap (ESC) est pressée, la capture s'arrête.

� Fermeture de la caméra et des fenêtres OpenCV.

12

3.3 Troisième version : Développement d'une version

avec Reconnaissance vocale et synthèse vocale sur

PC

Cette troisième version a pour objectif d'o�rir à l'utilisateur le moyen d'intéragir
avec les objets reconnus par YOLO. Pour cela, il est interessant de noter que
le langage utilisé dans notre interface est dit opératif [FAL1986]. Un lan-
gage opératif est orienté vers l'exécution d'actions concrètes et mesurables.
Contrairement à un langage purement théorique ou descriptif, il permet
de décrire des processus qui mènent directement à des résultats pratiques,
comme l'exécution d'une tâche ou la résolution d'un problème. Dans un
langage opératif, chaque action doit être clairement dé�nie, de manière à ce
que le programme ou le système sache exactement ce qu'il doit faire. Cela
se traduit par une syntaxe simple et précise pour exprimer des opérations à
réaliser. La syntaxe opérative en reconnaissance vocale est essentielle pour
structurer l'interaction voix-machine de manière �uide et e�cace. Elle per-
met de contrôler précisément l'écoute de l'utilisateur, l'analyse des mots-clés,
l'activation des fonctionnalités associées, le retour vocal ou visuel.

Dans le contexte de notre étude, le vocabulaire choisi correspond en
général à des verbes qui sont associées à ce que peut renvoyer la caméra
sur son champ d'observation. Par exemple, des mots comme voir, aider,
loin, proche peuvent déclencher des actions tels que voir les objets devant la
caméra, demander de l'aide sur les possibilités du dialogue, donne l'objet le
plus proche dans le champ de la caméra. La nature du dialogue est donc très
limitée. De plus, le contexte de modalité choisi est la reconnaissance de la
parole puisque notre sujet concerne des personnes aveugles ou malvoyants.
Or, cette modalité est malheureusement très délicate à gérer de part le bruit
ambiant, la qualité de la reconnaissance. Il faut par conséquent permettre
d'interpréter des phrases avec malheureusement des mots non reconnus, des
erreurs de reconnaissance. Les phrases peuvent être non respectueuse d'une
syntaxe du français. A titre d'exemple, voici une phrase prononcé plusieurs
fois et le résultat de la reconnaissance. La phrase est : "montre moi les objets
que tu voix" et elle est prononcée 7 fois de suite :

1 montre -moi que tu vois

2 montre -moi les objets que tu vois

3 a des moutons et les objets que tu vois

4 montre -moi les objets que tu vois

5 montre -moi les objets que tu vois

6 a un mois de que tu as que tu vois

7 tu peux tu vois

13

Le résultat montre clairement que sur 7 répétions, trois sont correctes (2, 4,
5) et les autres ont une syntaxe ne respectant pas le français(1, 3, 6, 7). Par
conséquent, utiliser un parseur qui permettrait de valider la syntaxe de la
phrase reconnue vocalement, ne serait pas d'une grande utilité.

La technique que j'ai choisie est l'utilisation d'une grammaire à îlots de
con�ance[1][2]. Un îlot de con�ance en langage naturel fait référence à une
portion de texte ou de discours où certaines informations sont considérées
comme �ables et établies, souvent dans un contexte plus large où des éléments
de doute ou d'incertitude peuvent exister. En reconnaissance de la parole, il
est fréquent qu'une partie de la transcription soit erronée à cause de bruits
externes, d'accents ou de variations dans la parole. Les îlots de con�ance
aident à identi�er ces erreurs rapidement et à les corriger en se basant sur les
parties du discours où la certitude est plus élevée, facilitant ainsi les processus
de traitement.

Les étapes générales pour implémenter un îlot de con�ance sont :

1. Capture et validation initiale de l'entrée vocale.

2. Prétraitement et détection de con�ance sur l'entrée vocale.

3. Validation des commandes dans un îlot sécurisé où seule une commande
valide est exécutée.

4. Réponse ou action sécurisée en fonction des résultats.

Dans cet exemple, l'implémentation d'un îlot de con�ance en Python sert
à valider une commande vocale avant qu'elle ne soit exécutée. Ce système
garantit que seules des commandes �ables et sûres sont prises en compte, pro-
tégeant ainsi l'intégrité du système. L'îlot de con�ance joue un rôle de �ltre
avant de laisser certaines actions se produire, en fonction de la reconnaissance
de la parole et d'une véri�cation préalable.

L'algorithme qui permet d'identi�er l'action la plus probable à partir
d'une phrase dite vocalement en analysant les mots qu'elle contient est le
suivant :

1. Création d'une table d'actions : Chaque action est associée à une liste
de mots synonymes.

2. Découpage de la phrase en mots : La phrase d'entrée est divisée en une
liste de mots individuels.

3. Pour chaque action, on compte combien de mots de la phrase �gurent
dans la liste des synonymes de l'action.

14

4. Un score est attribué à chaque action en fonction du nombre de mots
correspondants.

5. Sélection de l'action la plus pertinente :

6. L'action ayant le plus de mots en commun avec la phrase est retenue.

7. Si aucun mot pertinent n'est trouvé, la phrase est considérée comme
du "bruit".

Phrase d'entrée
Action identi-
�ée

Je veux apercevoir et observer le paysage voir

Peux-tu écouter et percevoir ce son entendre

Je vais courir et me déplacer rapidement marcher

Cette phrase n'a aucun mot pertinent Bruit détecté

Table 1: Exemple de fonctionnement de l'algorithme

Cet algorithme est décrit en pseudo-langage dans l'annexe 3 de ce doc-
ument. En ce qui concerne la synthèse vocale et la reconnaissance vocale,
plusieurs solutions étaient envisageable. Le tableau ci-dessous extrait de
ChatGPT compare ces solutions :

Outil Précision Langues Hors ligne Facilité Coût

Google Speech-to-Text **** 120+ Non **** Payant

Microsoft Azure **** 70+ Non **** Payant

IBM Watson *** 10+ Non *** Payant

OpenAI Whisper ***** 50+ Oui ** Gratuit

Deepgram **** 30+ Non **** Payant

VOSK *** 20+ Oui *** Gratuit

Table 2: Comparaison des outils de reconnaissance vocale

J'ai choisi VOSK qui a l'avantage d'être gratuit, d'être simple d'utilisation.
VOSK est une bibliothèque open-source développée pour la reconnaissance
vocale en temps réel et hors ligne. Basée sur le moteur Kaldi, elle est op-
timisée pour fonctionner sur des appareils à faible puissance, tels que les
Raspberry Pi, les ordinateurs embarqués, et les serveurs locaux.

15

En ce qui concerne la synthèse vocale, j'ai choisi PyAudio qui est une
bibliothèque Python qui permet d'interagir avec les périphériques audio pour
enregistrer et lire des �chiers sonores. Elle est basée sur PortAudio, une
API open-source pour la gestion des entrées et sorties audio sur plusieurs
plateformes.

L'une des di�cultés rencontrées est la gestion de la reconnaissance vocale
et de la reconnaissance d'objets avec YOLO en parallèle. Comme le traite-
ment de YOLO se fait en continu sur les images envoyées par la caméra, il
a fallu gérer également la reconnaissance de la parole en parallèle. A l'aide
des threads de Python, cela a été possible mais il a été nécessaire de vider le
canal de communication utilisée par la reconnaissance vocale pour ne pas que
la synthèse vocale soit interprétée par la reconnaissance vocale. L'annexe 5
contient le code de cette version.

3.4 Quatrième version : Portage de la version précé-

dente sur Raspberry

Dans cette quatrième version, la problématique a été l'installation de l'interface
pour Python. Le code de l'application n'a pas changé mais la camera 3d
n'était pas reconnue par Python. De nombreux échanges avec la hotline
du constructeur de la caméra ont �ni par aboutir à un fonctionnement de
l'application. Toutes le versions de Python ne sont pas compatibles avec
cette caméra. Mais la hotline m'a indiqué que Python n'était pas le langage
favori et stable pour cette caméra. D'ailleurs, ils convenaient eux-mêmes que
je n'étais pas le seul à avoir des problèmes. Les langages favories pour cette
caméra étant C ou C++, mais la gestion de YOLO se faisant généralement
en Python, il semblait naturel de gérer également la caméra en Python. Voici
un extrait de cette discussion avec la hotline :

"Although the librealsense SDK can be made to work with Raspberry Pi
using installation methods such as libuvc, Intel do not provide o�cial support
for the SDK on Pi. I also do not use it on Pi myself. It is not the ideal
platform to use RealSense on, as at best a Pi can provide access to basic
RealSense depth and color streams but not more advanced features such as
IMU data, alignment, post-processing �lters. It is possible to use libuvc to
install librealsense, but adding wrappers such as pyrealsense2 or ROS on Pi
can be problematic."

16

Figure 3: Interface de base
avec l'application Android

Figure 4: Ouverture du micro-
phone pour lancer une requête

3.5 Cinquième version : Développement d'un client An-

droïd

L'application Androïd (Figure 3 et 4) est un client qui permet de prononcer
une commande vocalement. Une fois le microphone ouvert, l'utilisateur dit
avec la voix ce qu'il souhaite demander à la caméra. Cette requête est envoyée
au Raspberry par le protocôle WIFI. Le Raspberry sert donc de serveur.
L'application Python est lancée sur celui-ci. Au démarrage, on demande à
l'utilisateur s'il souhaite interagir avec la caméra sur le Raspberry ou bien sur
le client Androïd. Ce client Androïd ne sert donc que d'interface client. Toute
l'analyse de la requête et la détection des objets se réalisent sur l'ordinateur
Raspberry. Cette application Androïd a été réalisé à l'aide d'un tutoriel
[3] montrant l'intégration de la bibliothèque VOSK sur Androïd auquel j'ai
ajouté le protocôle de communication pour communiquer avec le Raspberry.

17

Le code de cette application est fournie en annexe 4. Ci-dessous le code
Python qui gère l'attente des requêtes :

1 with socket.socket(socket.AF_INET , socket.SOCK_STREAM)

as server_socket:

2 server_socket.bind((HOST , PORT))

3 server_socket.listen ()

4 while True:

5 client_socket , client_address =

server_socket.accept ()

6 with client_socket:

7 data =

client_socket.recv (1024).decode('utf -8')

8 if data :

9 try:

10 parsed_data =

json.loads(data)

11 extracted_value =

parsed_data.get("text",

None)

12 if extracted_value:

13 q.put(extracted_value.lower())

14 except json.JSONDecodeError:

15 print("Failed to parse

data as JSON.")

Le programme fonctionne de la manière suivante :

1. Démarrage du serveur :

� Le serveur démarre et attend des connexions entrantes sur l'adresse
HOST et le port PORT.

2. Connexion d'un client :

� Un client se connecte au serveur via une connexion TCP.

� Le serveur accepte la connexion et crée un socket dédié à la com-
munication avec ce client.

3. Réception et traitement des données :

� Le client envoie un message contenant des données au format
JSON.

� Le serveur reçoit ces données et les convertit en texte.

18

� Il extrait la valeur associée à la clé "text" si elle est présente.

4. Stockage des données :

� Si la clé "text" est trouvée, son contenu est converti en minus-
cule.

� Ce texte est ensuite ajouté à la �le d'attente q pour un traitement
ultérieur.

5. Gestion des erreurs JSON :

� Si le message reçu n'est pas un JSON valide, une erreur est a�chée
sans interrompre le serveur.

6. Maintien en écoute :

� Le serveur continue d'écouter et peut traiter de nouvelles connex-
ions clients.

Côté Androïd, voici le code concerné par cette envoie de requête vers le
Raspberry :

1 private void sendToServer(String text) {

2 try (Socket socket = new Socket(RASPBERRY_PI_IP ,

PORT);

3 OutputStream outputStream =

socket.getOutputStream ()) {

4

5 outputStream.write(text.getBytes ());

6 outputStream.flush();

7

8 Log.d(TAG , "Texte envoye au serveur : " +

text);

9

10 } catch (Exception e) {

11 Log.e(TAG , "Erreur lors de l'envoi au

serveur : " + e.getMessage ());

12 }

13 }

3.6 Sixième version : Prise en compte de certaines re-

marques de Mr Uzan

Monsieur Uzan a eu la gentillesse de tester mon travail en me donnant des
pistes d'améliorations. L'une d'entre elles est une meilleure gestion du micro.

19

En e�et, le micro n'est pas contrôlable par l'utilisateur et la reconnaissance
vocale peut déclencher le traitement sur ce qui vient d'être dit. Ce qui
provoque la répétition d'une commande. Pour éviter cela, il est désormais
possible vocalement d'ouvrir le micro, de le fermer et de connaître l'état du
micro. D'autre part, lorsque la synthèse fonctionne, l'information qu'elle
donne est enlevé du canal où le thread de la reconnaissance de la parole va
chercher les informations à traiter.

Un autre conseil de Mr Uzan est de ne pas abuser de la synthèse vocale car
elle peut à force devenir une charge cognitive importante pour l'utilisateur.
C'est vrai que la tendance de mon application est de con�rmer ce qui a été
compris vocalement, ce qui devient trop redondant avec la reconnaissance de
la parole. Un certain nombre de messages vocaux ont été supprimés pour
alléger l'interface vocale.

Un autre conseil très intéressant mais pour plus tard, serait pour Mon-
sieurs Uzan de pouvoir scénariser l'application. En e�et, on pourrait imaginer
être dans une salle de bain, et se demander où est le dentifrice, est-ce que la
baignoire est remplie etc..

Un autre conseil serait de rendre le dialogue moins prévisible pour l'utilisateur
comme par exemple, tirer au hasard une réponse parmi plusieurs ayant le
même sens. Cela permet de générer un dialogue plus naturel et moins "robo-
tisé". Cela n'est pas encore intégré dans l'application.

3.7 Perspectives : Integration de Rasa et de chatGPT

J'ai commencé à étudier le framework Rasa qui permet de développer un
chatbot. Rasa est un framework open-source pour construire des chatbots et
des assistants virtuels alimentés par l'intelligence arti�cielle (IA). Il est prin-
cipalement utilisé pour développer des systèmes de traitement du langage
naturel (NLP) et permet aux entreprises de créer des assistants conversa-
tionnels personnalisés.

En e�et, l'interaction actuelle de mon système reste limitée et ne permet
pas à l'utilisateur de construire un dialogue contextuel. Rasa servira à gérer
les interactions avec l'utilisateur :

� Ex: "Décris-moi ce qu'il y a devant moi."

� Ex: "Y a-t-il un obstacle devant moi ?"

� Ex: "Quel est l'objet à 2 mètres sur ma droite ?"

� Rasa peut aussi gérer des commandes vocales et envoyer les requêtes
au modèle de détection.

20

ChatGPT peut être utilisé pour :

� Améliorer la description des objets détectés (expliquer avec plus de
détails).

� Adapter la réponse selon le contexte et le langage naturel.

� O�rir un support conversationnel avancé.

Ce type d'architecture serait conditionnée par la capacité du Raspberry a
supporté ce type d'outils avec un FPS raisonnable. Bien que le Pi est utilisé
pour des projets d'IA depuis un certain temps maintenant, une nouvelle
carte pour le Raspberry : le PI IA kit pourrait lui fournit le coup de pouce
nécessaire pour exécuter des modèles avancés et lui o�re la capacité de faire
fonctionner des modèles plus simples plus rapidement.

4 Conclusions

Ce projet m'a permis de découvrir de nombreux domaines que je ne connais-
sais pas du tout, telles que la reconnaissance vocale, la vision par ordinateur
à l'aide d'un framework réputé comme YOLO. La mise au point technique
de ce projet est complexe mais m'a permis d'entrevoir des possibilités très
encourageantes au service du handicap.

Les apports de ce projet me permettront d'aborder mon stage en en-
treprise avec plus de sereinité car sa problèmatique rejoint un peu celle de
ce projet en utilisant la vision par ordinateur pour apprendre à rééduquer
certaines personnes sou�rant d'handicap moteur.

5 Bibliographie

References

[BER2024] Somnath Bera, fonctions vocales avec le Raspberry Pi Zero, Re-
vue Elektor édition spéciale IA, p 58 à 65, 2024

[FAL1986] Pierre Falzon, Langages opératifs et compréhension opérative.
Thèse de doctorat, Université Paris V � La Sorbonne, 1986

[SUN2020] Anu Suneja, A comprehensive review of YOLO architectures
in computer vision: fromYOLOv1toYOLOv10, Independently published,
2020

21

[PAN2016] Tanay Pant, Building a virtual assistant for RaspBerry Pi,
APRESS, 2016

[VAL2021] Thierry Val, Réjane Dalcé, Imen Megdiche, Oussema Fakhfakh,
Khawla Ltif, Etude, conception, réalisation et tests d'une nouvelle canne
connectée intelligente multi-technologie radio, HAL open science, 2021

[WAN2021] Ting Wang, Rupert Grobler, Eric Monacelli, The Developpment
of EVAL Cane-A Smart Cane for the Evaluation of Walking Gait and
Walking Environmenti, HAL open science, 2021

6 Webographie

References

[1] O�ce québécois de la langue française. Îlots de con�ance en langage
naturel. Disponible en ligne : https://vitrinelinguistique.oqlf.
gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance

[2] Islands of Reliability for Regular Morphology. MIT. Disponible
en ligne : https://web.mit.edu/albright/www/papers/
Albright-IslandsOfReliability.pdf

[3] Site de démo Vosk sur Androïd. Disponible en ligne : https://
alphacephei.com/vosk/

[4] Le projet icane. Disponible en ligne : https://www.transtech.fr/
projets/icane/

7 Annexes

7.1 Annexe 1: Test de Yolo v7

1 import cv2 as cv

2 import numpy as np

3

4 # Charger les poids et la configuration YOLOv4 -tiny

5 weights_path = 'yolov7 -tiny.weights '

6 config_path = 'yolov7 -tiny.cfg'

7 net = cv.dnn.readNet(weights_path , config_path)

8

22

https://vitrinelinguistique.oqlf.gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance
https://vitrinelinguistique.oqlf.gouv.qc.ca/fiche-gdt/fiche/8394138/ilot-de-confiance
https://web.mit.edu/albright/www/papers/Albright-IslandsOfReliability.pdf
https://web.mit.edu/albright/www/papers/Albright-IslandsOfReliability.pdf
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/
https://www.transtech.fr/projets/icane/
https://www.transtech.fr/projets/icane/

9 # Charger les noms des classes (fichier coco.names)

10 with open('coco.names', 'r') as f:

11 classes = [line.strip() for line in f.readlines ()]

12

13 # Obtenir les noms des couches de sortie

14 layer_names = net.getLayerNames ()

15 output_layers = [layer_names[i - 1] for i in

net.getUnconnectedOutLayers ().flatten ()]

16

17 cap = cv.VideoCapture (2)

18

19 while 1:

20 ret , img = cap.read()

21 if not ret:

22 break

23 img = cv.flip(img ,1)

24 height , width , channels = img.shape

25

26 # Pretraitement de l'image de la camera

27 blob = cv.dnn.blobFromImage(img , 0.00392 , (416,

416), (0, 0, 0), swapRB=True , crop=False)

28 net.setInput(blob)

29 outs = net.forward(output_layers)

30

31 # Analyser les detections

32 for out in outs:

33 for detection in out:

34 scores = detection [5:]

35 class_id = np.argmax(scores)

36 confidence = scores[class_id]

37 if confidence > 0.5:

38 # Obtenir les coordonnees de la boite

englobante

39 center_x = int(detection [0] * width)

40 center_y = int(detection [1] * height)

41 w = int(detection [2] * width)

42 h = int(detection [3] * height)

43 x = int(center_x - w / 2)

44 y = int(center_y - h / 2)

45 label = f"{classes[class_id]}:

{confidence :.2f}"

46

47 # Dessiner la boite et l'etiquette sur

23

l'image

48 color = (0, 255, 0)

49 cv.rectangle(img , (x, y), (x + w, y +

h), color , 2)

50 cv.putText(img , label , (x, y - 10),

cv.FONT_HERSHEY_SIMPLEX , 1, color , 2)

51

52 cv.imshow('Detection Camera ', img)

53 if cv.waitKey (1) == 27:

54 break

55

56 cap.release ()

57 cv.destroyAllWindows ()

7.2 Annexe 2: Yolo v7 et la camera 3d

1 # Ceci est un commentaire

2 import cv2

3 import torch

4 import pyrealsense2 as rs

5 import numpy as np

6 from models.experimental import attempt_load

7 from utils.general import non_max_suppression

8

9 \# Charger le modele de YOLOOV7

10 weights = 'model.pt' \# Remplacez par le chemin vers

votre modele

11 model = attempt_load(weights , map_location='cpu') #

Charger le modele sur CPU

12 names = model.names # Classes d'objets

13

14 # Initialisation de la camera Intel RealSense

15 pipeline = rs.pipeline ()

16 config = rs.config ()

17 config.enable_stream(rs.stream.color , 640, 480,

rs.format.bgr8 , 30) # Flux RGB

18 config.enable_stream(rs.stream.depth , 640, 480,

rs.format.z16 , 30) # Flux de profondeur

19 pipeline.start(config)

20

21 try:

22 while True:

24

23 # Capture des frames de la camera

24 frames = pipeline.wait_for_frames ()

25 color_frame = frames.get_color_frame ()

26 depth_frame = frames.get_depth_frame ()

27

28 if not color_frame or not depth_frame:

29 continue

30

31 # Convertir les frames en images OpenCV

32 color_image =

np.asanyarray(color_frame.get_data ())

33

34 # Pretraitement pour YOLOv7

35 img = cv2.resize(color_image , (640, 480))

36 img = torch.from_numpy(img).permute(2, 0,

1).float()

37 img /= 255.0 # Normalisation

38 if img.ndimension () == 3:

39 img = img.unsqueeze (0)

40

41 # Prediction avec YOLOv7

mettre dans une fonction de ligne 40 a 61

42 pred = model(img , augment=False)[0]

43 pred = non_max_suppression(pred , 0.25, 0.45) #

Conf = 0.25, IoU = 0.45

44

45 # Dessiner les boites englobantes et afficher la

distance

46 for i, det in enumerate(pred): # Parcourir les

detections

47 if len(det):

48 for d in det: # d = (x1, y1, x2, y2,

conf , cls)

49 x1, y1, x2, y2, conf , cls = d[:6]

50 x1, y1, x2, y2 = int(x1), int(y1),

int(x2), int(y2)

51

52 # Calculer le centre de la boite

53 center_x = (x1 + x2) // 2

54 center_y = (y1 + y2) // 2

55

56 # Obtenir la distance de l'objet

57 distance =

25

depth_frame.get_distance(center_x ,

center_y)

58

59 # Afficher la boite et les

informations

60 label = f"{names[int(cls)]}

{conf :.2f} ({ distance :.2f}m)"

61 cv2.rectangle(color_image , (x1, y1),

(x2, y2), (0, 255, 0), 2)

62 cv2.putText(color_image , label , (x1,

y1 - 10),

cv2.FONT_HERSHEY_SIMPLEX , 0.5,

(0, 255, 0), 2)

63 # ici poser la question

64 # comparer la question avec "quel objet"

65 # appeler la fonction et dire les objets

66 cv2.imshow("RealSense YOLOv7", color_image)

67

68 if cv2.waitKey (1) == 27:

69 break

70

71 finally:

72 # Liberer les ressources

73 pipeline.stop()

74 cv2.destroyAllWindows ()

7.3 Annexe 3: Algorithme de la gestion des îlots de

con�ance

1 Debut

2

3 // Definition de la table des actions et leurs mots

associes

4 Table Actions_Mots = {

5 "voir" = ["apercevoir", "regarder", "observer",

"montrer"],

6 "entendre" = ["ecouter", "percevoir", "ouir"],

7 "parler" = ["dire", "exprimer", "communiquer",

"prononcer"],

8 "marcher" = ["avancer", "se deplacer", "courir"]

9 }

10

26

11 // Fonction qui identifie l'action la plus probable en

comparant les mots

12 Fonction Identifier_Action(phrase)

13 // Diviser la phrase en mots individuels

14 mots_phrase = Diviser(phrase , " ")

15

16 // Initialisation des scores pour chaque action

17 Scores_Actions = Table Vide

18

19 // Parcourir chaque action et ses mots associes

20 Pour chaque action , synonymes dans Actions_Mots Faire

21 // Calcul de l'intersection des mots de la

phrase et des synonymes

22 score = 0

23 Pour chaque mot dans mots_phrase Faire

24 Si mot appartient a synonymes Alors

25 score = score + 1

26 FinSi

27 FinPour

28 // Stocker le score pour l'action

29 Scores_Actions[action] = score

30 FinPour

31

32 // Trouver l'action avec le score maximal

33 Meilleure_Action = ""

34 Max_Score = 0

35

36 Pour chaque action , score dans Scores_Actions Faire

37 Si score > Max_Score Alors

38 Max_Score = score

39 Meilleure_Action = action

40 FinSi

41 FinPour

42

43 // Retourner l'action la plus probable ou "" si

aucune correspondance

44 Retourner Meilleure_Action

45 FinFonction

46

47 // Execution de l'algorithme avec des exemples

48 Afficher(Identifier_Action("Je veux apercevoir et

observer le paysage")) // Sortie : "voir"

49 Afficher(Identifier_Action("Peux -tu ecouter et percevoir

27

ce son")) // Sortie : "entendre"

50 Afficher(Identifier_Action("Je vais courir et me

deplacer rapidement")) // Sortie : "marcher"

51 Afficher(Identifier_Action("Cette phrase n'a aucun mot

pertinent")) // Sortie : ""

52

53 Fin

7.4 Annexe 4: Client Androïd pour la reconnaissance

vocale

1 package org.vosk.demo;

2

3 import android.Manifest;

4 import android.app.Activity;

5 import android.content.pm.PackageManager;

6 import android.os.Bundle;

7 import android.text.method.ScrollingMovementMethod;

8 import android.util.Log;

9 import android.widget.Button;

10 import android.widget.TextView;

11 import android.widget.ToggleButton;

12

13 import org.vosk.LibVosk;

14 import org.vosk.LogLevel;

15 import org.vosk.Model;

16 import org.vosk.Recognizer;

17 import org.vosk.android.RecognitionListener;

18 import org.vosk.android.SpeechService;

19 import org.vosk.android.SpeechStreamService;

20 import org.vosk.android.StorageService;

21

22 import java.io.IOException;

23 import java.io.InputStream;

24

25 import androidx.annotation.NonNull;

26 import androidx.core.app.ActivityCompat;

27 import androidx.core.content.ContextCompat;

28

29 import android.os.Bundle;

30 import android.util.Log;

31

32 import androidx.appcompat.app.AppCompatActivity;

33

34 import java.io.OutputStream;

35 import java.net.Socket;

28

36

37

38 public class VoskActivity extends Activity implements

39 RecognitionListener {

40

41 static private final int STATE_START = 0;

42 static private final int STATE_READY = 1;

43 static private final int STATE_DONE = 2;

44 static private final int STATE_FILE = 3;

45 static private final int STATE_MIC = 4;

46

47 /* Used to handle permission request */

48 private static final int

PERMISSIONS_REQUEST_RECORD_AUDIO = 1;

49

50 private Model model;

51 private SpeechService speechService;

52 private SpeechStreamService speechStreamService;

53 private TextView resultView;

54

55

56 private static final String TAG = "SocketClient";

57 private static final String RASPBERRY_PI_IP =

"192.168.1.27"; // Remplacez par l'IP du Raspberry Pi

58 // private static final String RASPBERRY_PI_IP =

"192.168.1.30 "; // IP du raspberry ecran

59 private static final int PORT = 12345; // Doit

correspondre au port du serveur

60 private OutputStream outputStream;

61 private Socket socket;

62

63 @Override

64 public void onCreate(Bundle state) {

65 super.onCreate(state);

66 setContentView(R.layout.main);

67

68 // Setup layout

69 resultView = findViewById(R.id.result_text);

70

71 setUiState(STATE_START);

72

73 findViewById(R.id.recognize_file).setOnClickListener(view

-> recognizeFile ());

74 findViewById(R.id.recognize_mic).setOnClickListener(view

-> recognizeMicrophone ());

75 ((ToggleButton)

findViewById(R.id.pause)).setOnCheckedChangeListener ((view ,

isChecked) -> pause(isChecked));

76

29

77 LibVosk.setLogLevel(LogLevel.INFO);

78

79 // Check if user has given permission to record

audio , init the model after permission is granted

80 int permissionCheck =

ContextCompat.checkSelfPermission(getApplicationContext (),

Manifest.permission.RECORD_AUDIO);

81 if (permissionCheck !=

PackageManager.PERMISSION_GRANTED) {

82 ActivityCompat.requestPermissions(this , new

String []{ Manifest.permission.RECORD_AUDIO},

PERMISSIONS_REQUEST_RECORD_AUDIO);

83 } else {

84 initModel ();

85 }

86 }

87

88

89 private void initModel () {

90 StorageService.unpack(this , "model -en-us", "model",

91 (model) -> {

92 this.model = model;

93 setUiState(STATE_READY);

94 },

95 (exception) -> setErrorState("Failed to

unpack the model" +

exception.getMessage ()));

96 }

97

98 @Override

99 public void onRequestPermissionsResult(int requestCode ,

100 @NonNull String []

permissions ,

@NonNull int[]

grantResults) {

101 super.onRequestPermissionsResult(requestCode ,

permissions , grantResults);

102

103 if (requestCode == PERMISSIONS_REQUEST_RECORD_AUDIO)

{

104 if (grantResults.length > 0 && grantResults [0]

== PackageManager.PERMISSION_GRANTED) {

105 // Recognizer initialization is a

time -consuming and it involves IO ,

106 // so we execute it in async task

107 initModel ();

108 } else {

109 finish ();

110 }

30

111 }

112 }

113

114 @Override

115 public void onDestroy () {

116 super.onDestroy ();

117

118 if (speechService != null) {

119 speechService.stop();

120 speechService.shutdown ();

121 }

122

123 if (speechStreamService != null) {

124 speechStreamService.stop();

125 }

126 }

127

128 @Override

129 public void onResult(String hypothesis) {

130 resultView.append(hypothesis + "\n");

131 new Thread (() -> sendToServer(hypothesis)).start();

132 }

133

134 @Override

135 public void onFinalResult(String hypothesis) {

136 resultView.append(hypothesis + "\n");

137 new Thread (() -> sendToServer(hypothesis)).start();

138 setUiState(STATE_DONE);

139 if (speechStreamService != null) {

140 speechStreamService = null;

141 }

142 }

143

144 @Override

145 public void onPartialResult(String hypothesis) {

146 // resultView.append(hypothesis + "aaa\n");

147 }

148

149 @Override

150 public void onError(Exception e) {

151 setErrorState(e.getMessage ());

152 }

153

154 @Override

155 public void onTimeout () {

156 setUiState(STATE_DONE);

157 }

158

159 private void setUiState(int state) {

31

160 switch (state) {

161 case STATE_START:

162 resultView.setText(R.string.preparing);

163 resultView.setMovementMethod(new

ScrollingMovementMethod ());

164 findViewById(R.id.recognize_file).setEnabled(false);

165 findViewById(R.id.recognize_mic).setEnabled(false);

166 findViewById(R.id.pause).setEnabled ((false));

167 break;

168 case STATE_READY:

169 resultView.setText(R.string.ready);

170 ((Button)

findViewById(R.id.recognize_mic)).setText(R.string.recognize_microphone);

171 findViewById(R.id.recognize_file).setEnabled(true);

172 findViewById(R.id.recognize_mic).setEnabled(true);

173 findViewById(R.id.pause).setEnabled ((false));

174 break;

175 case STATE_DONE:

176 ((Button)

findViewById(R.id.recognize_file)).setText(R.string.recognize_file);

177 ((Button)

findViewById(R.id.recognize_mic)).setText(R.string.recognize_microphone);

178 findViewById(R.id.recognize_file).setEnabled(true);

179 findViewById(R.id.recognize_mic).setEnabled(true);

180 findViewById(R.id.pause).setEnabled ((false));

181 ((ToggleButton)

findViewById(R.id.pause)).setChecked(false);

182 break;

183 case STATE_FILE:

184 ((Button)

findViewById(R.id.recognize_file)).setText(R.string.stop_file);

185 resultView.setText(getString(R.string.starting));

186 findViewById(R.id.recognize_mic).setEnabled(false);

187 findViewById(R.id.recognize_file).setEnabled(true);

188 findViewById(R.id.pause).setEnabled ((false));

189 break;

190 case STATE_MIC:

191 ((Button)

findViewById(R.id.recognize_mic)).setText(R.string.stop_microphone);

192 resultView.setText(getString(R.string.say_something));

193 findViewById(R.id.recognize_file).setEnabled(false);

194 findViewById(R.id.recognize_mic).setEnabled(true);

195 findViewById(R.id.pause).setEnabled ((true));

196 break;

197 default:

198 throw new IllegalStateException("Unexpected

value: " + state);

199 }

200 }

32

201

202 private void setErrorState(String message) {

203 resultView.setText(message);

204 ((Button)

findViewById(R.id.recognize_mic)).setText(R.string.recognize_microphone);

205 findViewById(R.id.recognize_file).setEnabled(false);

206 findViewById(R.id.recognize_mic).setEnabled(false);

207 }

208

209 private void recognizeFile () {

210 if (speechStreamService != null) {

211 setUiState(STATE_DONE);

212 speechStreamService.stop();

213 speechStreamService = null;

214 } else {

215 setUiState(STATE_FILE);

216 try {

217 Recognizer rec = new Recognizer(model ,

16000.f, "[\" one zero zero zero one\", " +

218 "\"oh zero one two three four five

six seven eight nine\",

\"[unk]\"]");

219

220 InputStream ais = getAssets ().open(

221 "10001 -90210 -01803. wav");

222 if (ais.skip (44) != 44) throw new

IOException("File too short");

223

224 speechStreamService = new

SpeechStreamService(rec , ais , 16000);

225 speechStreamService.start(this);

226 } catch (IOException e) {

227 setErrorState(e.getMessage ());

228 }

229 }

230 }

231

232 private void recognizeMicrophone () {

233 if (speechService != null) {

234 setUiState(STATE_DONE);

235 speechService.stop();

236 speechService = null;

237 } else {

238 setUiState(STATE_MIC);

239 try {

240 Recognizer rec = new Recognizer(model ,

16000.0f);

241 speechService = new SpeechService(rec ,

16000.0f);

33

242 speechService.startListening(this);

243 } catch (IOException e) {

244 setErrorState(e.getMessage ());

245 }

246 }

247 }

248 private void sendToServer(String text) {

249 try (Socket socket = new Socket(RASPBERRY_PI_IP ,

PORT);

250 OutputStream outputStream =

socket.getOutputStream ()) {

251

252 outputStream.write(text.getBytes ());

253 outputStream.flush ();

254

255 Log.d(TAG , "Texte envoye au serveur : " + text);

256

257 } catch (Exception e) {

258 Log.e(TAG , "Erreur lors de l'envoi au serveur :

" + e.getMessage ());

259 }

260 }

261

262 private void pause(boolean checked) {

263 if (speechService != null) {

264 speechService.setPause(checked);

265 }

266 }

267

268 }

Listing 1: Client Android

7.5 Annexe 5: Application Python sur Raspberry ou

PC

1 import cv2

2 import torch

3 import pyrealsense2 as rs

4 import numpy as np

5 import pyttsx3 # synthese vocale

6 import os

7 import pyaudio

8 import threading

9 import queue

10 from models.experimental import attempt_load

34

11 from utils.general import non_max_suppression

12 from vosk import Model , KaldiRecognizer

13 import socket

14 import json

15

16 ##

17 # dictionnaire

des objets detectable par YOLO

#

18 ##

19 translations = {

20 "person": "personne",

21 "bicycle": "velo",

22 "car": "voiture",

23 "motorbike": "moto",

24 "aeroplane": "avion",

25 "bus": "bus",

26 "train": "train",

27 "truck": "camion",

28 "boat": "bateau",

29 "traffic light": "feu de signalisation",

30 "fire hydrant": "borne d'incendie",

31 "stop sign": "panneau stop",

32 "parking meter": "parcmetre",

33 "bench": "banc",

34 "bird": "oiseau",

35 "cat": "chat",

36 "couch": "canape",

37 "dog": "chien",

38 "horse": "cheval",

39 "sheep": "mouton",

40 "cow": "vache",

41 "elephant": "elephant",

42 "bear": "ours",

43 "zebra": "zebre",

44 "giraffe": "girafe",

45 "backpack": "sac a dos",

46 "umbrella": "parapluie",

47 "handbag": "sac a main",

48 "tie": "cravate",

49 "suitcase": "valise",

50 "frisbee": "frisbee",

51 "skis": "skis",

35

52 "snowboard": "planche de snowboard",

53 "sports ball": "balle de sport",

54 "kite": "cerf -volant",

55 "baseball bat": "batte de baseball",

56 "baseball glove": "gant de baseball",

57 "skateboard": "skateboard",

58 "surfboard": "planche de surf",

59 "tennis racket": "raquette de tennis",

60 "bottle": "bouteille",

61 "wine glass": "verre a vin",

62 "cup": "tasse",

63 "fork": "fourchette",

64 "knife": "couteau",

65 "spoon": "cuillere",

66 "bowl": "bol",

67 "banana": "banane",

68 "apple": "pomme",

69 "sandwich": "sandwich",

70 "orange": "orange",

71 "broccoli": "brocoli",

72 "carrot": "carotte",

73 "hot dog": "hot dog",

74 "pizza": "pizza",

75 "donut": "beignet",

76 "cake": "gateau",

77 "chair": "chaise",

78 "sofa": "canape",

79 "pottedplant": "plante en pot",

80 "bed": "lit",

81 "diningtable": "table a manger",

82 "toilet": "toilettes",

83 "tvmonitor": "ecran de television",

84 "laptop": "ordinateur portable",

85 "mouse": "souris",

86 "remote": "telecommande",

87 "keyboard": "clavier",

88 "cell phone": "telephone portable",

89 "microwave": "micro -ondes",

90 "oven": "four",

91 "toaster": "grille -pain",

92 "sink": "evier",

93 "refrigerator": "refrigerateur",

94 "book": "livre",

36

95 "clock": "horloge",

96 "vase": "vase",

97 "scissors": "ciseaux",

98 "teddy bear": "ours en peluche",

99 "hair drier": "seche -cheveux",

100 "toothbrush": "brosse a dents",

101 "tv": "television"

102 }

103

104

105 ##

106 # Les ilots de

confiance pour la reconnaissance vocale

#

107 ##

108

109

110 ilots_de_confiance ={

111 "voir": ["voir", "apercevoir", "objets", "detecter",

"montrer", "autour"],

112 "aider" : ["aider", "expliquer", "aide"],

113 "quitter" : ["quitter", "stop", "sortir", "arreter"],

114 "proche" : ["proche", "pres"],

115 "loin" : ["loin", "lointain", "eloigne"],

116 "personne": ["personne", "vois -tu"],

117 "girafe": ["girafe", "vois -tu"],

118 "oiseau": ["oiseau", "vois -tu"],

119 "clavier": ["clavier", "vois -tu"],

120 "souris": ["souris", "vois -tu"],

121 "voiture": ["voiture", "vois -tu"],

122 "cheval": ["cheval", "vois -tu"],

123 "ciseaux": ["ciseaux", "vois -tu"],

124 "bouteille": ["bouteille", "vois -tu"],

125 "bonjour": ["bonjour", "salut"],

126 "micro": ["micro", "microphone"],

127 "micro_ouvert": ["micro", "ouvert"],

128 "micro_ferme": ["micro","ferme"]

129

130 }

131

132 ##

133 # Initialisation du modele de la bibliotheque

Vosk pour la reconnaissance de la parole

37

#

134 ##

135

136

137 def initialize_vosk_model(model_path):

138 if not os.path.exists(model_path):

139 raise FileNotFoundError(f"Le modele specifie a

{model_path} est introuvable.")

140 print("Chargement du modele Vosk ...")

141 model = Model(model_path)

142 print("Modele charge avec succes.")

143 return model

144

145

146 ##

147 # Dire une phrase

par synthese vocale

#

148 ##

149

150 def speak(text):

151 engine = pyttsx3.init()

152 engine.setProperty("voice", "french")

153 engine.setProperty("rate", 150)

154 engine.say(text)

155 engine.runAndWait ()

156

157

158 ##

159 #

Raspberry ou Android

#

160 ##

161

162 def recognize_speech(vosk_model ,q, choix):

163 if choix == 1:

164 recognizer = KaldiRecognizer(vosk_model , 16000)

165 mic = pyaudio.PyAudio ()

166 stream = mic.open(format=pyaudio.paInt16 ,

167 channels=1,

168 rate =16000 ,

169 input=True ,

38

170 frames_per_buffer =8192)

171 stream.start_stream ()

172 print("Parlez dans le microphone ...")

173 try:

174 while True:

175 data = stream.read (4096,

exception_on_overflow=False)

176 if recognizer.AcceptWaveform(data):

177 result =

json.loads(recognizer.Result ())

178 q.put(result.get("text", "").lower())

179 except KeyboardInterrupt:

180 print("Arret de la reconnaissance vocale.")

181 finally:

182 stream.stop_stream ()

183 stream.close()

184 mic.terminate ()

185 elif choix == 2:

186 with socket.socket(socket.AF_INET ,

socket.SOCK_STREAM) as server_socket:

187 server_socket.bind((HOST , PORT))

188 server_socket.listen ()

189 while True:

190 client_socket , client_address =

server_socket.accept ()

191 with client_socket:

192 data =

client_socket.recv (1024).decode('utf -8')

193 if data :

194 try:

195 parsed_data =

json.loads(data)

196 extracted_value =

parsed_data.get("text",

None)

197 if extracted_value:

198 q.put(extracted_value.lower())

199 except json.JSONDecodeError:

200 print("Failed to parse

data as JSON.")

201

202

203 ##

39

204 #

Detection d'objets par YOLO

#

205 ##

206

207 def detection_objet(objets_courant) :

208 global distance_min

209 global distance_max

210 global objet_min

211 global objet_max

212 global compteur_frame

213

214 # Pretraitement pour YOLOv7

215 img = cv2.resize(color_image , (640, 480))

216 img = torch.from_numpy(img).permute(2, 0, 1).float()

217 img /= 255.0 # Normalisation

218 if img.ndimension () == 3:

219 img = img.unsqueeze (0)

220 # Prediction avec YOLOv7

221 pred = model(img , augment=False)[0]

222 pred = non_max_suppression(pred , 0.3, 0.45) # Conf

= 0.25, IoU = 0.45

223 # Dessiner les boites englobantes et afficher la

distance

224 for i, det in enumerate(pred): # Parcourir les

detections

225 if len(det):

226 for d in det: # d = (x1, y1, x2, y2, conf ,

cls)

227 x1, y1, x2, y2, conf , cls = d[:6]

228 x1, y1, x2, y2 = int(x1), int(y1),

int(x2), int(y2)

229 # Calculer le centre de la boite

230 center_x = (x1 + x2) // 2

231 center_y = (y1 + y2) // 2

232 # Obtenir la distance de l'objet

233 distance =

depth_frame.get_distance(center_x ,

center_y)

234 # Afficher la boite et les informations

235 label = f"{names[int(cls)]} {conf :.2f}

({ distance :.2f}m)"

236 objet = names[int(cls)]

40

237 if distance < distance_min:

238 distance_min = distance

239 objet_min = objet

240 if distance > distance_max:

241 distance_max = distance

242 objet_max = objet

243 if objet not in objets_courants:

244 objets_courants.append(objet)

245 translation = translations.get(objet ,

"Mot non trouve")

246 cv2.rectangle(color_image , (x1, y1),

(x2, y2), (0, 255, 0), 2)

247 cv2.putText(color_image , label , (x1, y1

- 10), cv2.FONT_HERSHEY_SIMPLEX , 0.5,

(0, 255, 0), 2)

248 cv2.imshow("RealSense YOLOv7", color_image)

249

250

251 ###

252 # Programme

principal

#

253 ###

254

255 # Charger le modele YOLOv7

256 weights = 'model.pt' # Remplacez par le chemin vers

votre modele

257 model = attempt_load(weights , map_location='cpu') #

Charger le modele sur CPU

258 names = model.names # Classes d'objets

259

260 # Initialisation de la camera Intel RealSense

261 pipeline = rs.pipeline ()

262 config = rs.config ()

263 config.enable_stream(rs.stream.color , 640, 480,

rs.format.bgr8 , 30) # Flux RGB

264 config.enable_stream(rs.stream.depth , 640, 480,

rs.format.z16 , 30) # Flux de profondeur

265 pipeline.start(config)

266

267 vosk_model_path = "vosk -model -small -fr -0.22"

268 #vosk_model_path =

"vosk -model -small -fr -0.22/ vosk -model -small -fr -0.22"

41

Chemin vers le modele Vosk

269 vosk_model = initialize_vosk_model(vosk_model_path)

270

271 # Initialiser le traducteur

272 # translator = Translator ()

273 engine = pyttsx3.init()

274 data=""

275 distance_min =1.0

276 distance_max =0.0

277 objet_min=""

278 objets_courants =[]

279 sauvegarde_liste =[]

280 compteur_frame =0

281 etat_micro=True

282

283 HOST = '0.0.0.0 ' # ecoutez sur toutes les interfaces

reseau

284 PORT = 12345 # Assurez -vous que ce port correspond

a celui de l'application Android

285

286 try:

287 objet=""

288 nb_objets =0

289 q = queue.Queue()

290 print("Assistant active. Parlez pour interagir avec

la camera.")

291 speak("Assistant active. Parlez pour interagir avec

la camera.")

292 # Thread pour la reconnaissance vocale

293 while(True):

294 choix=int(input("voulez -vous utiliser le

raspBerry (1) ou Android (2) pour la

reconnaissance vocale ?"))

295 if choix !=1 and choix != 2:

296 print("Il faut taper un ou 2")

297 continue

298 else :

299 break

300 speech_thread =

threading.Thread(target=recognize_speech ,

args=(vosk_model ,q,choix ,))

301 speech_thread.start()

302 while True:

42

303 action=""

304 while not q.empty():

305 remaining_data = q.get_nowait ()

306 action=""

307 try:

308 data=""

309 data = q.get(timeout =1) # Timeout pour

eviter de rester bloque

310 if data is None: # Signal d'arret

311 break

312 except queue.Empty:

313 pass # Continuer a tourner sans bloquer

314 # Capture des frames de la camera

315 frames = pipeline.wait_for_frames ()

316 color_frame = frames.get_color_frame ()

317 depth_frame = frames.get_depth_frame ()

318 if not color_frame or not depth_frame:

319 continue

320 # Convertir les frames en images OpenCV

321 color_image =

np.asanyarray(color_frame.get_data ())

322 # parseur d'ilots de confiance

323 mots_vocaux = data.split()

324 action=""

325 ensemble1=set(mots_vocaux)

326 ensemble2=set()

327 nb_elements_commun =0

328 if(len(mots_vocaux) > 0):

329 print("reconnaissance=", data)

330 for cle , valeurs in

ilots_de_confiance.items():

331 for valeur in valeurs:

332 ensemble2.add(valeur)

333 # print(" ensemble1=", ensemble1 ,

"ensemble2=", ensemble2)

334 communs=ensemble1 & ensemble2

335 if len(communs) > nb_elements_commun:

336 nb_elements_commun =

nb_elements_commun + 1

337 action=cle

338 ensemble2=set()

339 # action engendre

340 print("action = ", action)

43

341 if action == "micro":

342 if etat_micro == True:

343 speak("le microphone est disponible")

344 action=""

345 else :

346 speak("le microphone n'est pas

disponible")

347 action=""

348 elif action =="micro_ferme":

349 etat_micro=False

350 action=""

351 speak("ferme")

352 elif action =="micro_ouvert":

353 etat_micro=True

354 speak("ouvert")

355 action=""

356 data=""

357 if etat_micro ==False :

358 continue

359 elif action =="voir":

360 speak("vous voulez savoir ce que l'on voit

?")

361 print("les objets que l'on voit sont ")

362 liste_mots_a_dire=""

363 for value in objets_courants:

364 nom=translations.get(value , "mot non

trouve")

365 print(nom)

366 liste_mots_a_dire +=nom

367 liste_mots_a_dire += " "

368 speak(liste_mots_a_dire)

369 print("fin des objets reconnus")

370 data=""

371 elif action =="aider":

372 speak("""

373 Je peux detecter les objets devant vous et

indiquer leur distance.

374 Dites 'les objets ' pour obtenir une liste

des objets detectes.

375 Dites 'quel est l'objet le plus proche ' pour

connaitre l'objet le plus proche.

376 Dites 'quitte l'assistant ' pour fermer

l'assitant.

44

377 """)

378 data=""

379 elif action =="quitter":

380 speak("Assistant desactive. A bientot.")

381 pipeline.stop()

382 cv2.destroyAllWindows ()

383 speech_thread.join()

384 exit()

385 elif action =="proche":

386 speak("L'objet le plus proche est ")

387 speak(translations.get(objet_min , "Mot non

trouve"))

388 data=""

389 action=""

390 elif action == "loin":

391 speak("L'objet le plus eloigne est ")

392 speak(translations.get(objet_max , "Mot non

trouve"))

393 data=""

394 action=""

395 elif action =="personne":

396 speak("Vous voulez savoir si je vois une

personne ?")

397 if "person" in objets_courants :

398 speak("Oui , j'en vois une")

399 else :

400 speak("non , je n'en vois pas")

401 elif action =="girafe":

402 speak("Vous me demandez s'il y a une girafe

?")

403 if "giraffe" in objets_courants :

404 speak("Oui , j'en vois une")

405 else :

406 speak("non , je n'en vois pas")

407 elif action == "voiture":

408 speak("vous voulez savoir si je vois une

voiture ?")

409 if "car" in objets_courants:

410 speak("Oui , j'en vois une")

411 else:

412 speak("non , je ne vois pas de voiture")

413 elif action == "cheval":

414 speak("Vous me demandez s'il y a un cheval?")

45

415 if "horse" in objets_courants:

416 speak("Oui , j'en vois un")

417 else:

418 speak("non , je ne vois pas de cheval")

419 elif action =="oiseau":

420 speak("Vous me demandez si je vois un

oiseau ?")

421 if "bird" in objets_courants:

422 speak("Oui , j'en vois un")

423 else:

424 speak("non , je n'en vois pas")

425 elif action =="clavier":

426 speak("Vous me demandez si je vois un

clavier ?")

427 if "keyboard" in objets_courants:

428 speak("Oui , je vois un clavier")

429 else:

430 speak("non , je ne vois pas de clavier")

431 elif action =="souris":

432 speak("Vous me demandez si je vois une

souris ?")

433 if "mouse" in objets_courants:

434 speak("Oui , je vois une souris")

435 else:

436 speak("non , je ne vois pas de souris")

437 elif action =="ciseaux":

438 speak("Vous me demandez si je vois un ciseau

?")

439 if "scissors" in objets_courants:

440 speak("Oui , je vois une paire de ciseau")

441 else:

442 speak("non , je ne vois pas de ciseau")

443 elif action =="bouteille":

444 speak("Vous me demandez si je vois une

bouteille ?")

445 if "bottle" in objets_courants:

446 speak("Oui , j'en vois une")

447 else:

448 speak("non , je n'en vois pas")

449 elif action =="bonjour":

450 speak("bonjour , je suis votre assistant")

451 elif cv2.waitKey (1) == 27:

452 break

46

453 else :

454 distance_min =1.0

455 distance_max =0.0

456 objet_min=""

457 objet_max=""

458 detection_objet(objets_courants)

459 print("Les objets reconnus en cours sont :")

460 for value in objets_courants:

461 print(translations.get(value , "mot non

trouve"))

462 compteur_frame = compteur_frame + 1

463 if compteur_frame == 20:

464 compteur_frame = 0

465 objets_courants =[]

466 data=""

467 action=""

468 finally:

469 cv2.destroyAllWindows ()

47

	Introduction
	Objectifs
	La mise en place du projet

	Etat de l'art
	La canne EVAL multi-capteurs
	Une canne connectée intelligente multi-technologie radio
	Le projet ICanne
	C'est quoi YOLO ?

	Le déroulement du projet
	Première version : test et choix d'une version de YOLO
	Deuxième version : Intégration de cette première version avec la caméra 3d
	Troisième version : Développement d'une version avec Reconnaissance vocale et synthèse vocale sur PC
	Quatrième version : Portage de la version précédente sur Raspberry
	Cinquième version : Développement d'un client Androïd
	Sixième version : Prise en compte de certaines remarques de Mr Uzan
	Perspectives : Integration de Rasa et de chatGPT

	Conclusions
	Bibliographie
	References
	Webographie
	References
	Annexes
	Annexe 1: Test de Yolo v7
	Annexe 2: Yolo v7 et la camera 3d
	Annexe 3: Algorithme de la gestion des îlots de confiance
	Annexe 4: Client Androïd pour la reconnaissance vocale
	Annexe 5: Application Python sur Raspberry ou PC

